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About Me

• Graduated with Bachelor’s and Masters in Mechanical Engineering at Georgia Tech
• Concentration in Robotics

• Worked at NASA JPL, iRobot, SharkNinja
• Interested in space, consumer products, IoT

• Enjoy machine design, mechatronics, coding, robotics
• Outside of work 

• Sports, Music, IoT Projects 
• Contact Info

• sjmock99@gmail.com
• Personal Website

mailto:Stephenbusiness.me@gmail.com
http://sjmock99.github.io/


Skills

Hardware:
• CAD Design

• SolidWorks, Creo
• EPDM

• Prototyping
• 3D Printing, Laser Cutting
• Mill, Lathe, etc
• Soldering

• Controllers / Controls
• Arduino, ESP32, Teensy
• Raspberry Pi, Intel NUC
• PID
• Robot Kinematics 

• Sensors
• Force Torque (FTS), Thermocouples, IMU, 

Encoder, Infrared, Ultrasonic, Hall, 
Humidity/Temperature, Laser Displacement

• Components
• Stepper Motors, Brushed Motors, Motor 

Drivers, 8020, Servos, Relays, Power Supplies, 
Thermal Controllers, various electronics

Software:
• Programming Languages / Frameworks / OS

• Python, C/C++ [for Microcontrollers], MATLAB, 
LabView
• Basic HTML, CSS, JS, Java

• ROS1, ROS2, MicroROS
• Linux (Ubuntu)

• Networking / Protocols
• Serial Protocols: I2C, SPI, UART
• MODBUS TCP, TCP/IP, SSH, VISA, SCPI
• MQTT

• Applications
• MATLAB, Git, SciKit Learn (Machine Learning), 

OpenCV, Linux, Jupyter Notebook, Notion, 
LabView, PlatformIO, VSCode



• NASA JPL Work

– End Effector Development Testbed (EDT) V&V (Summer 2023)

– Laser Transform Module for End Effector Development (EDT) Testbed (Summer 2023)

– Software Development Summary of Work (Fall 2023)

– End Effector Initial Developmental Testbed (Spring 2020 - Summer 2021)

– Mars Sample Return Handling Concept of Operations (Winter 2021)

– Robotic Transfer Arm (RTA) Kinematics (Winter 2021)

• School and Personal Projects

– Chat Controlled Twitch Robot (Winter 2024)

– Flowers Invention Studio Hackathon Winning Submission: MedMate (Fall 2020)

– Senior Capstone: EELS Robot Sampling System (Fall 2021) 

– TurtleBot ROS Demonstrations (Spring 2022)
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NASA Jet Propulsion Lab 
Summary of Work

Robotics Mechanical Engineer 
• February 2023 – February 2024
Mechanical Engineering Intern/Co-op
• May 2020 - August 2021
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The decision to implement Mars Sample Return will not be finalized until NASA’s completion of the National Environmental Policy Act (NEPA) 
process. This document is being made available for information purposes only.
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Overview – CCRS Testbeds roles held by Stephen Mock

2/27: Start 5/1: EFT Cancelled

8/3: EDT Scope changed from CCRS to SRL

11/9: CCRS Program Suspended

End Effector Functional Testbed 
(EFT) Support Mechanical 

Engineer

End Effector Development 
Testbed (EDT) CogE, V&V and 

Checkout Campaign

On Orbit Assembly Testbeds 
Systems (OATS) CASAH 

Support Engineer

Org chart on next slide

11/28: EDT Delivery Review4/18: EFT Tabletop

11/6: OATS PDR
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On Orbit Assembly Testbeds Systems (OATS) Org Chart

Testbed Management (A01)
OATS Lead/CAM – Amila Cooray (352A)

Lead SE – Vladimir Arutyunov (347R)

Testbed Electrical (C01)

EGSE Lead – Emilio Vazquez (1.0) (337C)

EGSE Support – Jose Fernandez (0.25) 

(337C)

Support Engineer – Heidy Kelman (0.5)(347A)

Harness Engineer – TBD (337C)

Systems Engineering (A01)
RSE – Vladimir Arutyunov (347R)

MSE – Christine Gebara (355L)

Controls Engineer – Teo Wilkening (347A)

Operations Engineer – Anas Delane (347R) (0.5)

Testbed Software (D01)

CASAH Engineer – David Kim (0.5) (347G)

CASAH Support Engineer –TBD (1.0)(347G)

CASAH Support Engineer – Stephen Mock 

(347C)

Labview Engineer – Michael Errico (0.5) (3468)

Testbed Mechanical (B01)

PIT Structure Engineer– Christine Gebara (355L)

EDT Cog-E – Stephen Mock (347C)

PIT Testbed CogE – Taylor Sun (355A)

Testbed Engineer – Denise Garcia (355A)

Testbed Engineer – Kelsy Coston (355A)

Testbed Engineer– Stephen Mock (347C)

Testbed Engineer – Stephen Gerdts (347C)

APX Student – Matt DiMarzio (355H)

APX Student – Joy Liu (347R)

Designer – Leon Huntsman (0.5) (355D)

Designer – Anasheh Tooroosian (0.5) (355D)

Structural Analyst – Mike Beale (0.25) (355H)

Technician – James Bailey (0.5) (357C)

Technician – John Phu (0.5) (357L)

Manufacturing Engineer – Ryan Scherich (0.5) (357A)

Thermal Support – Juan Villalvazo (0.25) (353F)
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End Effector Development 
Testbed (EDT) V&V

Mars Sample Return Mission 

May 2023 – August 2023



Preface
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History
The End Effector Testbed (EDT) was created as part of the Capture Contain Return System (CCRS) Testbeds team to provide a 
venue to test prototype CCRS end effectors starting in Summer 2022. The objective of the testbed was to measure force and 
torque data during insertion for misaligned interfaces. It was a successor to a previous testbed for which the inner hexapod was 
originally purchased. With increases in load requirements, a larger 8020 structure and linear actuator were implemented for 
high axial loading and clocking moments. An ExoHex was designed to enable the inner hexapod to still be used for precise 
positioning, without having to survive high loads. EDT V&V started in May 2023, but was later rescoped in August 2023 to be 
delivered to the Sample Retrieval Lander (SRL) team in November 2023. As a result, the purpose of the testbed and checkout 
tests were focused on general functionality rather than CCRS specific implementation. This package highlights the capabilities of 
EDT, as well as the performed checkouts, and reference information. The checkouts relate to validating the basic functionality of 
the testbed, particularly for safety purposes.
JPL Team
• EDT V&V: Stephen Mock (347C)
• EDT Software: Michael Errico (3468)
• EDT Design / Build / History:

• Vladimir Arutyunov (347R)
• Stephen Gerdts (347C)
• Jake Chesin (347B)
• Heidy Kelman (347A)

• EDT CAD: Heidy Kelman (347A)



EDT Overview
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Design Intent: Simulate misalignments in 6DoF such that forces/torques can be 
measured during end effector functions

Loosen 

ExoHex Legs

Move Inner 

Hexapod to Position

Lock down 

ExoHex Legs
Demate Inner and 

ExoHex

Linear Actuator 

moves to preload*

Linear Actuator backs off 

and resets to free space

*Forces/Torques 
measuring during whole 

operation

CONOPS

Linear Actuator 

moves to contact*

Linear Actuator
 (Bosch Rexroth EMC-040)

FTS (ATI Omega 160)

Positioning Hexapod 
(PI H-840.G2A )

Load Shunt 
Hexapod (ExoHex)

Laser Assembly
(ILD1420-50)

Linear Ball Bearings

y
z

x

Bosch Rexroth EMC-040
• 305 mm Stroke
• 3.4 kN rated peak axial 

load
• Absolute encoder
• Optional limit switches 

(not installed)

ATI Omega 160
• Dual Calibration
• High Load: SI-2500-400
• Low Load: SI-1000-120 

PI H-840.G2A
• 392N Fx load capacity 

(normal orientation)
• ±50mm lateral 
• ±25mm vertical
• ±15° rotation (tip/tilt)
• ±30° rotation (clocking)
• Absolute encoder

ExoHex
• 31kN axial load capacity at 

zero position
• based off single leg 

proof test to 5500N
• full assembly not 

proofed
• ±10mm lateral 
• ±1.15° rotation (tip/tilt)
• ±0.57° rotation (clocking)

• Tested values

Main Component Capabilities
• ExoHex for high loads

• Inner hexapod for precise positioning
• ExoHex can always be detached

• LabView software for Operator GUI and 
Control

• FTS recording during test and for force 
limiting
• NI DAQ 9205

• Interlock-based E-stop
• Feed Motion Functionality

• Freespace Move
• Move to Contact
• Move to Preload / Move to No Load

• Hexapod coordinate frame changes
• Laser distance measuring capability 
Not Fully Checked Out:
• Stiffness Characterization via. laser assembly
• ExoHex assembly proof loading 
• Linear actuator proof loading
• Hexapod coord. frame changes in LabView

Functional Capabilities

Electronics

Locking casters

End Effector 

Functions

Testbed coordinate system

https://www.ati-ia.com/products/ft/ft_models.aspx?id=Omega160
https://www.pi-usa.us/en/products/6-axis-hexapods-parallel-positioners/h-840-6-axis-hexapod-700810?gclid=CjwKCAjw7oeqBhBwEiwALyHLM_KG-qEGtypR2N1Ls6Lbl83W6OR-dlbfu_7Muo9clhHvMbi7s8vdrhoCW_wQAvD_BwE#specification


Electronics

Ethernet 
Switch

Test Apparatus

GSE Feed Stage

GSE FTS (1x)

Control System
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EDT Functional Block Diagram

EGSE Software MGSE Test Article

Reads Commands Command/ReadPowers

Hexapod 
Controller

Feed Stage 
Controller

[TBD “Station” MGSE]

Operator

E-Stop

NI DAQ 9205

LabView

GSE Hexapod

Computer

FTS Controller 
(1x)

UPS
Power Strip 

120V AC

24V DC Power 
Supply #1

Misc Digital I/O

GSE Lasers

Laser 
Controller

*Components for the CCRS EE removed



Main Program Software Design
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Process User 
Input

Collect Telemetry
Safety 
Check

Halt 
System

Fault

Process Linear Actuator 
Feed Commands

Main Loop (10 Hz)

Global FTS 
Limits

E-Stop Button

Program 
Start

Configuration File:
• Linear Actuator Feed Command Parameters (position/force limits, speeds)
User Inputs:
• Linear Actuator Feed Commands

• Free-space move
• Move to contact
• Move to pre-load
• Move to no-load

• Hexapod Free-space Position move
• Hexapod speed

Telemetry:
• Hexapod

• Absolute Position (X, Y, Z)
• Absolute Rotation (XRot, YRot, ZRot)

• FTS
• Force (Fx, Fy, Fz)
• Torque (Tx, Ty, Tz)

• Linear Actuator
• Absolute Position
• Speed

E-Stop: Full system halt with physical E-stop but system continues telemetry reading
Global FTS Limits: Hard-coded and set on program start, halts system if global limits 
are exceeded during any operation

Config
File

Software Written by Michael Errico

Save 
Telemetry to 

File



Operator GUI Screen
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FTS: Fx, Fy, Fz 

FTS: Tx, Ty, Tz 

Data Filename 
Settings

FTS Telemetry

Linear Actuator 
Telemetry 

Hexapod 
Telemetry

System Halt and Clear

Error Status 
Indicators

Linear Actuator 
Feed Command  

Parameters

Linear Actuator 
Move commands

Testbed Status

Other testbed 
functionality (moving 
hexapod, etc)



Operator GUI Screen cont.
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Linear 
Stage 
Errors

Hexapod 
Errors

FTS
Errors

Clear 
Instrument

Global Force 
Limit Indicator

Instrument TabError Tab

Hexapod 
Commands

Linear 
Actuator 

Commands

Settings Tab

Global FTS 
Limits



Linear Actuator Movement Block Diagrams
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Linear Actuator Free-space Move:
- Higher speed position move with pre-defined 
limits
- Very low force threshold

Linear Actuator Move to Contact:
- Slow movement to contact until force threshold is passed

Linear Actuator No-Load Movement:
- Reverse movement to reduce force to near-zero

Move to Preload:
- Slow forward movement until target force is within force 
range

`



Checkout Summary
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ExoHex Misalignment [09] 
Objective: Check for potential collisions between ExoHex strut legs and Inner 
Hexapod top plate during misalignment, and during potential demate motions 
(simulated by a hexapod shield). 
Result: With the tested subset of misalignments (27 tests), no ExoHex struts were 
close to collisions. This however is only done for a smaller subset of misalignment 
and should be performed with actual test misalignments.   

ExoHex Misalignment Test CONOPs

Basic FTS Checkout [02] 
Objective: Confirm the coordinate system of the FTS for future coordinate 
transformations.
Result: FTS frame tracks as expected, and coordinate frame change to testbed 
frame maps correctly 

FTS Coordinate Frame

Basic Hexapod Movement [06] 
Objective: Move to the maximum 1DoF travel ranges of the hexapod using the 
testbed coordinate frame. Additionally, test the behavior of the hexapod to stop 
under global force overload error. 
Result: Hexapod moves in accordance with testbed coordinate frame (using 
vendor provided software) and responds to force overload error in LabView.

Basic E-Stop Checkout [10] 
Objective: Verify E-stop capability to stop motion of both the hexapod and 
linear actuator during operation, yet still maintain connection and FTS 
recording. Test how system halts are handled and cleared. Additional testing to 
see how MicroMove responds to an E-stop being pressed.
Result: E-stop halts motion, maintains connection and continues to record FTS 
data. System halt can be cleared when E-stop is removed. MicroMove will 
error when E-stop is pressed, and hexapod can be restarted after E-stop is 
unpressed.



Checkout Summary (continued)
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Basic Laser Checkout [03] 
Objective: Understand the capabilities of the laser nest assembly 
when measuring a static cube moving to different positions. Could 
potentially be used for future stiffness characterization
Result: Lasers measure relative movement accurately, but small 
errors exist which are likely due to overall misalignment of laser 
assembly to hexapod.

Basic Feed Motion Checkout [05] 
Objective: Test main linear actuator movements (freespace move, move to 
contact, and move to preload, move to no load). 
• Freespace Move: higher speed movement to bring the linear actuator to a 

specific position, with very low force threshold.
• Move to Contact: Lower speed movement which moves to a force threshold 

and stops when it is exceeded (no tolerance). 
• Move to Preload: Lower speed movement which moves to a specific force 

value with a given +- tolerance. Meant to reach the desired preload given by 
the test requirements.

• Move to No Load: Reverse “Move to Contact”, in which the actuator moves 
away from contact so that Free-space Moves can be commanded.

Result:
• Linear actuator program demonstrated its intended use for all four different 

types of movements through applying a specific preload to an aluminum 
can.

• Linear actuator triggers halt when overall testbed force thresholds are 
exceeded, preventing users from inputting new commands.

EDT Laser Nest and Coordinate Frames



Basic Feed Motion Checkout Results 
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Move to Contact: 13.87N

Case 2, Test 2
• Move to Contact to 10N, system stopped at 

13.87N

Move to 
Contact: 
12.75N

Move to Preload: 27.64N

Case 3, Test 2
• Move to Contact to 10N, system stopped at 

12.75N
• Move to Preload to 25N, system stopped at 

27.64N

Move to Contact 
Demonstration (video)

Notes:
• The system does not halt perfectly as the force build-up 

occurs quickly; thus, the system does not stop exactly 
when the force threshold is crossed. 
• Move to contact speed: 1mm/s
• Move to preload speeds 0.5mm/s

• There is some compliance in the aluminum can such that 
when the linear actuator stops, the force decreases

Move to Contact: 56.70N

Case 3, Test 3
• Move to Contact to 50N, system stopped at 

56.70N

Compliance



Laser Transform Module for End 
Effector Development (EDT) Testbed 

Mars Sample Return Mission
May 2023 – August 2023



Testbed Background + Objective
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Objective: Characterize stiffness of ExoHex top plate under proof load
1. Datum (cube) mounted to top plate is considered rigid with hexapod top 

plate which will deform under external load
2. Lasers points to cube and measure changes in position in free space due to 

distortions
3. Using 7 lasers, perform transform calculation to define full homogenous 

transform of cube

Linear 
Actuator

FTS

Laser 
Module

ExoHex
Laser 
Cube

Inner 
Hexapod

Datum Cube

1 2 3

54

6
7

ExoHex Top 
Plate

Laser Bracket

Lasers (Numbered)

60mm

End Effector Developmental Testbed

Z

Y

X

Testbed 
Frame

Z

Y

X Testbed 
Frame

Y

X

Z

Hexapod 
Frame

Y

X

Z Hexapod 
Frame



Coordinate Frame Definition
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Datum 
Cube

1

4 6
7

5

2 3

1
2

3

54

6
7

ExoHex Top 
Plate

Laser 
Bracket

Lasers (Numbered)

60mm

Laser # 
definitio

n
X

Y

Z
Laser 
Frame

Z

Y

X

Testbed 
Frame

Y

X

Z

Hexapod 
Frame

• Separate CAD model to simulate rotations / translations
• Lasers represented as (very small diameter) extrusions 

up to surface for ground truth generation from nominal 
laser positions → SolidWorks sensors

• Laser Frame → Testbed Frame is Ry(-90)*Rx(90)



Implementation Approach
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• Define frames of our 7 lasers such that we can perform the IK (inverse kinematics) to 
define the full transform of the cube
• Coordinate system is defined on bottom of 3 planes, where n^ is defined
• α and β are constants defined to surface of where lasers hit cube face

• In our case alpha and beta are cube side lengths (4in / 2) 
• Reference

Setup
1) Choose a world coordinate frame (origin frame) for lasers

1) Origin frame set at first laser frame (CS1)
2) Create transformations to each of the frames on each of the lasers

1) Z-axis always the pointing towards the cube
2) H_O1, H_O2 (ETC)
3) Pure Z-translation in that coordinate frame from each individual sensors

3) Solve for transform from laser readings in laser frame on cube using equations from 
paper for

1) Rotation Matrix
2) Cube Base Centroid Vector

4) Perform transformation from world frame to testbed frame

β
 

α

Cube Base Centroid

Origin frame (O), same as CS1

2. Cube Base Centroid Vector

N^ 
1. Rotation 
Matrix 

X

Y
Z

X
’

Y
’

Z’

https://fornat1.jpl.nasa.gov/casah/ros2/ltm


Main Vector Definition
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Y

X

Z

Origin Frame (coincident with CS1)

<AB><AC>
B

C

A

O

<OA
> <OB

><OC
>

E

D

O

<DE>

<OE>

<OD>

O

F
G

<OF>

<FG>

<OG>

Defined in Origin Frame
Vector of Interest: <AC> = <OC> - <OA>, <AB>  = <OB> - 
<OA>

Where <OC> = H03*P3, <OB> = H02 * P2, <OA> = H01*P1 
where P1, P2, P3 are the magnitude of the laser (in Z axis)

Defined in Origin Frame
Vector of Interest: <DE> = <OE> - <OD>

Where <OE> = H05*P5, <OD> = H04*P4 and P4, P5 are 
the magnitude of the laser (in Z axis)

Y

X

Z
Y

X

Z

Defined in Origin Frame
Vector of Interest: <FG> = <OG> - <OF>

Where <OG> = H07*P7, <OF> = H06*P6 and P6, P7 are the 
magnitude of the laser (in Z axis)



Ground Truth Test Approach
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Perform 3 types of ground truth tests
1. Rotations
2. Translations
3. Combined 

• Using CAD, rotate the cube in a specific order
• Laser output from CAD informs inverse kinematics and creates ground truths
• Check rotations by outputting Euler Angles in (ZYX) format

• For tests cases, Δ translations and rotations defined at CUBE centroid 
• Cube Base Centroid (centroid of 3 lasers on cube face) may have some 

“parasitic” translations due to rotation about a different pivot

Inputs
1. Laser values from CAD
2. Rotations (Euler Angles) for comparison
3. Position vector between Cube Base Centroid and Origin Frame for 

comparison
Outputs

1. Rotations (Euler Angles)
2. Position vector between Cube Base Centroid and Origin Frame

Compare 
1. Ground Truth Rotation vs. Inverse Kinematic Rotation solution
2. Ground Truth Position vector vs. Inverse Kinematic Position solution

X

Y
Z

Translations and 
Rotations defined 
at Cube Centroid

Cube 
Base 

Centroid

Origin



Rotation (Orientation) Ground Truth Tests
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Test #
Δ X 

(mm)
Δ Y 

(mm)
Δ Z 

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot 
Match?

IK Pos. 
Match?

1 0 0 0 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 1 0

4 0 0 0 0 0 1

5 0 0 0 1 2 0

6 0 0 0 1 2 3

7 0 0 0 -2 -5 3

Ground Truth Test Cases

Rotation Test Cases
• Test individual rotations, as well as rotations in sequence, as well as with either +/- 

signage
• Correctly tracked Euler Angles (for both positive and negative), as well as sequences of 

Euler Angles
• Rounded (to the first decimal place) → might be due to sig-figs on laser output 

from CAD
• When rotating about centroid of cube, the cube base centroid also translates, which was 

captured in the positional inverse kinematics



Translation Ground Truth Tests
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Ground Truth Test Cases

Translation Test Cases
• Test individual translations, as well as multiple translations, as well as 

with either +/- signage
• Tests worked in accordance with translations (and had no rotations)
• Rounded (to the first decimal place) → might be due to sig-figs on laser 

output from CAD

Test #
Δ X 

(mm)
Δ Y 

(mm)
Δ Z 

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot. 
Match

?

IK Pos. 
Match?

1 0 0 0 0 0 0

2 +2.5 0 0 0 0 0

3 -2.5 0 0 0 0 0

4 0 +2.5 0 0 0 0

5 0 0 +2.5 0 0 0

6 +2.5 +1 0 0 0 0

7 +2.5 0 +1 0 0 0

8 0 +2.5 +1 0 0 0

9 +2.5 +1 +5 0 0 0



Combined Ground Truth Tests
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Ground Truth Test Cases

Combined Test Cases
• Test both translations and rotations at centroid of cube

• Every case works for the inverse kinematics!
• Rounded (to the first decimal place) → might be due to sig-figs on laser output from CAD

Test #
Δ X 

(mm)
Δ Y 

(mm)
Δ Z 

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot. 
Match

?

IK Pos. 
Match?

1 5 7.5 10 -2 -5 3

2 -5 -7.5 -10 -2 -5 3

3 -5 -7.5 -10 2 5 -3

4 1 3 5 2 0 0

5 5 3 1 0 3 0

6 3 2 1 -5 0 0



Mars Sample Return Mission

August 2023 - January 2024

Software Development Summary of Work



Capture, Containment, and Return System (CCRS) in ERO Context

ERO CCRS

Testbeds for V&V of these 
interaction functions



CCRS Overview for Testbeds context

1

Lid+OS (LOS) Install3

2

OS (Orbiting Sample)

OS Pickup

Integrated Lid Pickup

Station 3
- Using EE, Place Lid + OS (LOS) onto SCV Body
- Using EE, Latch Lid + OS (LOS) into SCV Body

Station 1
- Dock EE to ILA 
- Release ILA from LRM
- Using EE, Extract ILA from LRM

Integrated Lid Assembly 
(ILA) on Lid Release 
Mechanism (LRM)
• Only hardware interactions 

during all of Lid Pickup
• ILA: RIP, SCV Lid, ATC, SOLAR

SCV Body
• The vessel the OS comes home in
• Only hardware interactions during all of Lid Pickup

End Effector (EE)
• Robotic manipulator

Gantry

Acronyms:
• Robot Interface to Payload (RIP)
• Secondary Containment Vessel 

(SCV)
• Aerothermal Closeout (ATC)
• SCV-OS Latch, Align, and Restrain 

(SOLAR)
• Integrated Lid Assembly (ILA)
• Lid Release Mechanism (LRM)
• Orbiting Sample (OS)
• End Effector (EE)

Station 2
- Using EE, Dock ILA to OS (catch ring)

Catch Ring
• Only hardware interactions during OS Docking*
• Provided by PIE to OS team

PIE HardwarePIE Station 
Interaction 
Functions

RTAS 
Hardware

R
SC

E



PIT Overview

y

x

z

Lid Pickup OS Pickup LOS Install

EE

FTS

Removable top plate

FTS

Station holder

3X Comp 

Stages

EE Cup

Spacer
Frame

Generalized Configuration

Station

PIT: Pickup and Installation Testbed

Goal: Test and measure station and tool interactions between CCRS end effector and various interfaces 
given a specific misalignment in TVAC environment 

Hexapo
d

1.8 m
[5.9 
ft]

1.4 m [4.5 ft]

LRM
OS-Sim

SCV
Body

Aftbody simulator



PIT Software Functional Block Diagram

NUC-

CTRL

NUC-

OPS

BLUE BOX

FTS 

Controllers 

(2x)

Thermal 

Controller (4x)

Hexapod 

Controller

GSE 

Cameras

Control System Modules

EtherCAT

MODBUS 
TCP/IP

SSH

USB

ECAT

ASCE

SE Card
USB-to-

RS422

Te
st

b
ed

 C
o

n
tr

o
l S

ys
te

m
 

R
ac

k

R
SC

E 
EG

SE
 R

ac
kSwitch Card

USB Ethernet Cable

Network 

Switch

USB Device 

Distribution

USB Cable

Wireless

Network 

Switch

Power 

Supply Units

USB

CASAH “Modules”

LVPC



PSU_MGR:

ROS2 Power Supply Package



Keysight Power Supply

Nomenclature
• Module (CASAH Module): represented by psu_mgr, manages multiple 

instances of a Power Supply Class
• Mainframe: Refers to an instance of the Power Supply Class and represents 

a single mainframe which houses multiple channels
• Channel: One of the four smaller power supplies present in a mainframe 

which have their own voltage, current, power requirements
• Assumes each frame has four channels – some frames have two 

channels combined - have not tested this behavior

• Objective: Create a CASAH Module that can manage multiple Keysight Power 
Supplies (PSU) with the core functionality of

1. Initialize PSUs
2. Query and Publish Telemetry
3. Allow operators / other modules to

1. Clear errors
2. Change channel outputs (ON/OFF)

• Intended use was to turn ON/OFF motors for RSCE Rack Sequencing
• Previous scope included error management -> later moved to FP_MGR

Keysight Series N6700 

Channels (4x)

Mainframe (1x)

PSU Output Channels



Main Functionality of UPS

Hardware Pre-existing Functionality:
• Over Protection settings to Protect Hardware

• Channel will stop outputting during 
Overvoltage (OV) or Overcurrent (OC) event

Needed Software Functionality:
• Turn on/off Power Supply Channels
• Read/Set Voltage Set Points, Current Limit
• Read/Set Overvoltage Set Points
• Read/Set Overcurrent Set Points
• Read Overvoltage Errors
• Read Overcurrent Errors
• Read Voltage Output
• Read Current Output

PSU can be separately programmed via. screen

PSU Output 
Screen 

PSU Overvoltage 
Protection Settings

PSU Voltage Settings

Current Limit
Voltage Set Point



Keysight Power Supply Wrapper

Instance Data:

• ID

• usb_addr

• output_states []

• currents []

• current_limits []

• voltages []

• voltage_setpoints []

• error []

• error_enum[]

• overvoltage_setpoints []

• overcurrent_enables []

• fault

Functions:
• Set/Read Output States

• Set/Read Current Limit Set 

Points

• Set/Read Voltage Set Points

• Set/Read Overvoltage Set Points

• Set/Read Overcurrent Enable 

State

• Read Error

• Read Error Enum

• Read Current Measurement

• Read Voltage Measurement

• Read Fault

Communication & API:
• Uses Virtual instrument Software Architecture 

(VISA) API 
• Can communicate using TCP / USB

• VISA Layer gives specific “VISA” 
address to hardware

• NI-VISA Library
• Commands are sent through Standard 

Commands for Programmable Instruments 
(SCPI)
• EX: OUTP ON, (@2)

• Set channel 2 OUTPUT to ON
• Used PyVISA library -> module written in Python

• Library supports multithreading
• Index of the array corresponds to channel of 

mainframe

KeysightPowerSupply.py 

• Fault defined as any error on any channel for a single frame



PSU_MGR Setup

PSUID: Power 
Supply 1

psu/psu_id/tlm

(unique for each device) 

Launch File

telemetry

Launch

Services

PSUID: Power 
Supply 2

/psu_mgr

Commander

msg/PsuMsg:

• Array of msg/Psu for full 

telemetry stream of all 

powersupplies

/psu_msg.msg

NUC

Frame 1 Frame 2

USB HUB

FP_MGR

PSUID: Power 
Supply X

Frame X 
…

USB

TLM



Architecture #1: Asynchronous Control, Multithread

Power Supply 

Unit 

Assumed Requirements:
1. Query / Publish telemetry at specific frequency every time
2. Timing of service call timing is not strict; can be performed whenever possible

Thread 1 
(Control Loop 
@ TBD Freq)

Thread 2
(Service Callbacks)

Query Telemetry

Publish Telemetry

Send Request to 

Hardware

Set Instance Data Query Response from 

Hardware

Publish Response

Request

Notes:
• Asynchronous control scheme
• Requires multiple communication interfaces 

with different threads
• i.e. multiple TCP Clients to the same 

server (hardware)
• Keysight Power Supply does not support 

multiple interfaces
• Tested multiple clients and 

multithreading
• Did not work (I/O errors)

• Vendor claims that the PSU cannot query 
multiple requests at the same time



Architecture #2: Synchronous Control, Single Loop

Power Supply 

Unit 

Thread 1  
(Control Loop 
@ TBD Freq)

Thread 2
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Flag

Set Instance Data

Publish Response 

(i.e. data changed)

Request

Instance Data: 

Service Flag

Check Service 

Flag

Perform Service

Notes:
• Synchronous Control Loop
• Only one thread can access hardware 

at a time
• risks “overrun” in a single cycle if 

performing service takes a long 
time compared to required 
control loop frequency

Assumed Requirements:
1. Query / Publish telemetry at specific frequency every time
2. Timing of service call timing is not strict; can be performed whenever possible

Mutex Lock



Architecture #3: Asynchronous Control, Single Thread

Power Supply 

Unit 

Thread 1 
(Control Loop 
@ TBD Freq)

Thread 1
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Instance Data

Notes:
• Asynchronous Control Scheme 

• Only one callback runs and 
interfaces with hardware at 
a time

• Assumes that telemetry output 
can be delayed if service call 
takes too long
• Need requirements on 

control loop frequency
• Chosen architecture since 

hardware does not support 
multithreading 

Assumed Requirements:
1. Query / Publish telemetry at specific frequency is not critical if delayed
2. Service calls should be performed when available (even if blocking)

Send Request to 

Hardware

Query Response from 

Hardware

Publish Response

Request

Blocking Service Calls 
(Same Mutually Exclusive 

Callback Groups)



State Machine for Single Power Supply Node

On Node Launch

Publish Telemetry

For ALL PSU

• PSU ID

• Time of Log

• Output States []

• Voltage Set Points []

• Current Limit Set Points []

• Enable OC []

• OV Set Point []

• Voltage []

• Current []

• Output Error State []

• Output Error Enum []

• Fault

Set OV Set Point

Set OC Enable

Set Current Limit

Set Voltage Set 

Point

Initialization Function

Parameter by Launch 
File

Service Publisher

/psu_mgr.yaml

Launch Function
telemetry

Set Output Off

Set Output On

Relevant Instance Data:

• psu_ arr (psu[])

Service call
/set_output

Runs command to 

turn on/off specific 

output channels

Return PSU 

Output states, etc

Service Call
Set Current

For psu in psu_arr

LOOP: Every 10Hz

Callback

Query Full 

Telemetry

Service call
/clear_psu_erro
r

Clears the output 

errors for a specific 

channel

Return PSU Output 

Error State, etc

Notes:
• Single control loops through every PSU 

and generates telemetry messages
• Service calls are blocking (mutually 

exclusive callbacks)
• Output can be changed during a fault 

via. service call
• Handled by FP_MGR

• Stress testing with 1 NUC, 2 PSU, USB:
• 10Hz control loop frequency

B
LO

C
K

IN
G



Alternative Architecture

• Query Error Telemetry 

from Devices
Publish error to 

Fault Monitor

On Node Launch

Timer Callback

Publish Telemetry

For ALL PSU

• PSU ID

• Time of Log

• Output States []

• Voltage Set Points []

• Current Limit Set Points []

• Enable OC []

• OV Set Point []

• Voltage []

• Current []

• Output Error State []

• Output Error Enum []

• Fault

Set OV Set Point

Set OC Enable

Set Current Limit

Set Voltage

Initialization Function

Parameter by Launch 
File

Service Publisher

/psu_mgr.yaml

LaunchFunction
telemetry

Set Output Off

Set Output On

Relevant Instance Data:

• psu_ arr (psu[])

Service call
/set_outpu
t

Runs command to 

turn on/off specific 

output channels

Return PSU 

Output states

Service Call

Parse if Error is 

Present

Set Current

LOOP: Every 500Hz

For psu in psu_arr

LOOP: Every 1Hz

Callback Query Full 

Telemetry

Service call
/clear_psu_erro
r

Clears the output 

errors for a specific 

channel

Return PSU 

Output Error State

Notes:
• Two control loops 

• Faster 500Hz rate for error checking
• Slower 1Hz for telemetry output

• Publishes directly to fault monitorB
LO

C
K

IN
G



THM_MGR:
ROS2 Thermal Controller Package



Thermal Manager Objective

• Objective: Create a CASAH Module that can manage multiple Thermal Controllers the core 
functionality of:

1. Initializing Controllers
2. Query and Publish Telemetry
3. Allow operators / other modules to

1. Clear errors
2. Change Alarm Set Points
3. Change Heating Control Set Point

• Controllers originally to be used for TVAC Testing [-50C to 70C]
• Heaters and Thermocouples for closed loop control to set point
• “Thermal Zones” for Single Redundancy
• Watlow PM PLUS PID & Integrated Limit Controller, Omega Heaters, Crydom DC Relays

Main

Scanner

Backup

Main Controller Scanner
Backup 

Enabled

External Alarm 

/ Cyro Shutoff

Cryo 

Shutoff

NO 
Relay

NC 
Relay

Disable 
Heater

Scanner tripped by 
Main/heater failure 

OR
Scanner failure

Redundancy 
Strategy

Enable Heater

Fault

Backup

Single Failure - 
Redundancy

Double Failure - 
Hardware at Risk

Thermal Zone Concept 



FlatSat Physical Setup

Network 
Switch

Power 
Supply*

Scanner

Main Controller

Backup 
Controller 

Main Relay Backup Relay

Main TCMain Heater

Scanner TC

Backup TC
Backup Heater

Ethernet 
(3x)

Switch (3x)

Aluminum 
Plate

Fan

* 120VAC or 24V DC



Thermal Controller Required Functions (Manual & Commanded)

Main Controller
1. Set Control Set Point to T_Set_Point
2. Set Alarm 1 Set Points to T_Alarm_Low, 

T_Alarm_High 
3. Heat until T_Set_Point [Output 1]

Scanner 
1. Set Alarm 1,2 Set Points to T_Scanner_Low, 

T_Scanner_High
2. Disable main heaters if T_Scanner_Trip is 

reached [Output 2]
3. Engage Relay for Backup Heaters if 

T_Scanner_Trip is reached [Output 1]

Backup Controller
1. Set Control Set Point to T_Set_Point
2. Set Alarm 1 Set Points to T_Alarm_Low, 

T_Alarm_High 
3. Heat until T_Set_Point [Output 1]

Talarm_low

Toperational

Tset point

Tscanner_low

15°C

5°C

3°C

0°C

Tscanner_high

Talarm_high

25°C (TBD)

28°C (TBD)

Hardware Details
• All heating / alarm control is done by controllers onboard processing
• Controller sends PWM signals to heaters to reach temperature 

based on TC readings 
• Closed Loop (PID)

• Each controller has 2x outputs, alarms
• If alarm is triggered, relays enable / disable outputs with latching
• Alarm set points must be set during operation

• Otherwise, alarm will trip when trying to reach control loop set 
point



Main Functionality of THM_MGR

Hardware Pre-existing Functionality:
• PID Heating
• Alarm Output Behavior 

Needed Software Functionality:
• Set Control Set Point
• Set Alarm (High / Low)
• Read Temperature
• Read TC Error
• Read Alarm 1,2 State
• Read Heat Power
• Read Alarm 1,2 Set Points (high / low)
• Read Control Set Points

Thermal Controller can be separately programmed 
via. screen

• Watlow Controllers use MODBUS TCP
• Write/Read from specific registers (32bit)
• Using PyModbus library – does not support 

multithreading

MODBUS Register List



THM_MGR Setup

thm/thm_id/tlm

(unique for each 

device) 

Launch File

telemetry

Launch

Services

THMID: Controller 1

/thm_mgr

Commander

msg/ThmMsg:

• Array of msg/Psu for full 

telemetry stream of all 

thermal zones / controllers

/thm_msg.msg

NUC

Ethernet 

Switch

FP_MGR

…

Ethernet

THMID: Zone 1

Zone 1

Main Scanner Backup

Controller 1

Single

THMID: Zone X

Zone X

Main Scanner Backup

TLM



Architecture #3: Asynchronous Control, Single Thread

Thermal 

Controller Unit 

Thread 1 
(Control Loop 
@ TBD Freq)

Thread 1
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Instance Data

Notes:
• Asynchronous Control Scheme 

• Only one callback 
interfaces with hardware at 
a time

• Assumes that telemetry output 
can be delayed if service call 
takes too long
• Need requirements on 

control loop frequency
• Chosen architecture since 

PyModbus does not support 
multithreading 

Assumed Requirements:
1. Query / Publish telemetry at specific frequency is not critical
2. Service calls should be performed when available (even if blocking)

Send Request to 

Hardware

Query Response from 

Hardware

Publish Response

Request

Blocking Service Calls 
(Different Callback Groups)



State Machine for Thermal Manager

• Query Telemetry from Devices

Timer Callback

Publish Telemetry

For each Thermal Controller

• Thermal Controller ID

• Architecture

• Time of Log

• Temperature Reading []

• TC Error []

• TC Error []

• Heat Power []

• Control Set Points []

• Alarm 1,2 States []

• Alarm 1,2 (high/low) Set Points []

• Module Faulted?

Service Publisher LaunchFunction
telemetry

Relevant Instance Data:

• thm_ arr[]

Service call
/set_ctrl_set_poin
t

Set heating  

control set point

Return 

controller 

setpoint

Service Call

LOOP: Every 1Hz

For thm_controller in thm_arr

CallbackOn Node Launch

Set Controller Alarms 

1,2 (high/low)

Initialization Function

Parameter by Launch 
File

/thm_mgr.yaml

Set Control Set Points

Service 
call

/set_alar
m

Set an alarm 

set point

Return 

requested 

alarm set point

Set Scanner Alarms 1,2 

(high/low)

Service call
/clear_alarm

Send a clear 

alarm command 
Return 

Alarm State
B

LO
C

K
IN

G • Seems to be a large latency during 
service and telemetry queues when 
using thermal zones (up to 5 seconds)

• Single controller works with 1Hz 



V&V



• Performed basic checkouts for Symétrie Hexapod 

– Range of Motion

– Stopping with FTS

• Helped with test procedure / actually interfacing with CASAH operator tools, 
testbed deployment

hxpd_mgr

https://symetrie.fr/en/hexapods/zonda/


End Effector Initial 
Developmental Testbed

53

Mars Sample Return Mission

Spring 2020 - Summer 2021



• The decision to implement Mars Sample Return will not be finalized until 
NASA’s completion of the National Environmental Policy Act (NEPA) process

• This document is being made available for information purposes only

• The information presented has been approved through export control and has 
been released to be shown to the public

Disclaimer



Mars Sample Return Planning Overview

55

What I worked on!

Pre-Decisional Information – For Planning and Discussion Purposes Only



The CCRS Capture and Containment Module uses an end effector on the Robotic 
Transfer Arm to perform a series of assembly tasks to contain the OS, assemble the 
OS into the EEV, and maintain the Earth clean zone

CCRS Containment Operations

56Artist's Concept



Assembly Operations

1. PCV Lid 
aligned with OS

2. PCV Lid 
mated with OS

3. OS aligned 
with PCV Base

4. PCV Base and Lid 
mated and brazed

5. PCV aligned 
with the SCV Base

6. PCV inserted 
into SCV Base/EEV

7. SCV Lid aligned with 
the SCV Base/EEV

8. SCV Lid mated with 
the SCV Base/EEV

9. CAM Lid aligned 
with the EEV

10. CAM Lid mated 
with the EEV

OS  = Orbiting Sample
PCV = Primary Containment Vessel
SCV = Secondary Containment Vessel
CAM = Containment Assurance Module
EEV = Earth Entry Vehicle



The Problem: End Effector Misalignment

58

End Effector Misalignment can be due to a variety of 
issues such as:

• Joint errors (encoder inaccuracy/sensitivity)
• Kinematic Errors (model is not 100% true to 

real geometry)
• Non-kinematic errors (backlash, stiffness, 

temperature effect)

 Objectives:
1. Create a platform to test behavior of Robotic 

Transfer Arm (RTA) end effectors when 
misalignment is present
• Not testing static preloading of seals due 

to higher load requirements
2. Test the capability of mechanical alignment 

strategies (e.g., Christmas Tree Insertion, end 
effector posts)

3. Measure the forces and torques present 
during docking/insertion procedures

Misalignment during docking

Containment 
Lid

End Effector 
(EE)

Gripping 
Feature

End 
Effector

Christmas Tree 
Insertion (CTI)

Seating 
Mechanism

PCV Lid Insertion into OS

Orbiting 
Sample (OS)



Testbed Requirements

59

Function Force Required (N) 75% Margined Load Required (N)* Rationale

CTI Insertion 80 140 Load Estimates calculated and provided 
from previous work. Magnitudes of values 
quite similar to those presented in MSL Bit 

Box and M2020 SHA insertion tests.

Braze Insertion 80 117

PCV Grip 200 350

PCV Place 200 350

SCV Lid Grip 200 350

SCV Lid Place 200 350

CAM Lid Grip 200 350

CAM Lid Place 100 175

ERM Lid Grip 200 350

ERM Lid Place 200 350

Load Requirements

Displacement Requirements

Offset Required Rationale

Position (along x-axis) +/- 10 mm
All of the requirements are based off the SHA EE Misalignments. Each of the following 

requirements have ≈200% Margin. Additionally, the magnitude of the errors are similar to 
those present in the MSL Drill and Bit Box Tests

Position (along y-axis) +/- 10 mm

Angular (about x-axis) +/- 2.86 deg

Angular (about y-axis) +/- 2.86 deg

Clocking (about z-axis) +/- 2.86 deg

* 75% added margin accounts for uncertainty in force required

M2020 SHAMSL Bit Box

EE Misalignment OS Pin Insertion
SHA EE RCCM 

(M2020)
Drill and Bit 
Box (MSL)

SCS Bit Exchange 
(M2020)



Testbed Requirements
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Function
Stroke Required 

(mm)
50% Margined Stroke 

Required (mm)*
Rationale

CTI Insertion 65.8 98.7
Stroke Estimates calculated 
and provided from current 

CAD models of CCRS 
Architecture. 

Braze Insertion 184.6 276.9

PCV Grip 11.3 17.0

PCV Place 201.6 302.4

SCV Lid Grip 10.4 15.6

SCV Lid Place 88.6 132.9

CAM Lid Grip 19.5 29.3

CAM Lid Place 133.5 200.3

ERM Lid Grip 10.4 15.6

ERM Lid Place 17.6 26.4

Stroke Requirements

* 50% added margin accounts for uncertainty in stroke required



Testbed Requirements

61

Functional requirements the testbed:
• Apply Force 
• Provide Motion (6-DoF)

• Provide Initial Alignment Error
• Lateral
• Angular
• Clocking 

• Measure Forces (6-DoF)

These requirements can be met using:
• Stewart Platform 
• Linear Actuator
• 6-Axis Force Torque Sensor

Test System

X

Y

Z

Lateral – XY plane
Angular – XY Tip/Tilt

Clocking – Z Twist 

Z

X
Y

Twist

TipTilt

End 
Effector

Lid



Previous Flight Project Testbeds

62

M2020 Tube Retainer Performance 
Characterization Testing (2020)

M2020 SHA Insertion/Misalignment 
Testing (2017)

MSL Bit Exchange Development Test (2008)

IFACT: Insertion Force & Alignment 
Characterization Testbed 



Containment Lid*

Linear Actuator
• Attaches to post assembly 
• Provides force and travel in Z-

direction Force Torque Sensor (FTS)
• Records docking Force/Torques 

between EE and Lid/OS
• Feedback control if overloading 

Hexapod
• Movement in 6 DoF
• Mounts SCV (or various) Lids
• Provides misalignment for EE/Lid 

interface
• Supports EE/Lid/OS interface load

Testbed Configuration

63

End Effector (EE)*
• Grip/Place various 

containment lids/OS
• Test alignment strategies 

(cones/CTI)

*These pieces are still in development, not final models

Force Limiter
• Uses springs with preload in order to 

mechanically prevent force overload
• Limit switches to electrically stop all 

motion if overload occurs

Remote Center of Compliance (RCCM)
• Helps to correct for misalignment 

during insertion
• Final design being produced (currently 

wire rope isolator stand in)

• Conceptualized and designed 
testbed

• Hardware trade studies
• Obtained quotes from vendors
• Procured parts (BoM), assembly 

instructions



Test Bed Dimensions

64

32’’

30’’ 9.5’’

30’’



Additional Photos

65



1. Calibrate and align hexapod 
to end effector

Testbed Operational Concept

66

2. Move the hexapod in 5 DoF 
(lateral, angular, clocking) to 
create misalignment

3. Move Linear Actuator down 
vertically, begin docking until
• Load reached (350N)
• Switches Triggered
• Timeout

Record FTS Data and reset 
alignment



Real Life Photos/Demonstration

67



Mars Sample Return Handling 
Concept of Operations

68

Mars Sample Return Mission

Winter 2021



Disassembly Components

69

COS Disassembly Tube DisassemblyEEV Disassembly

OS/
PCV 
GSE

First Double Walled Isolator Second Double Walled Isolator

EEV EEV GSE 

COS
Sample 
Tubes

Gas 
Extraction 

Tool

Tube 
Cutting 

Tool

Sample 
Extraction Tool

SCV 
Removal 

Tool

PCV 
Removal 

Tool

OS 
Removal 

Tool



1. CAM Lid retention bolts released

2. CAM Lid lifted away from EEV

4. SCV removed from EEV

3. SCV Base – EEV bolts removed 

6. SCV has hole 
drilled to equalize 

pressure

7. SCV Lid latches 
are pressed to 

release Lid

8. SCV Lid is 
lifted away from 

the SCV Base

9. Sleeve 
deflects pawls 

10. COS is gripped 
by gripper

11. COS is 
removed 
from SCV 

Base

12. PCV has hole 
drilled to equalize 

pressure

13. PCV cut along 
some TBD 

location below 
the braze line

14. OS is removed 
from the PCV Base

15. OS has bottom 
cap bolts removed 

16. OS bottom cap is 
lifted away from the 
OS and atmosphere 

sample is curated

17. OS Lid latches are 
pressed to release lid

18. OS body 
removed from OS 

and PCV Lids

19. RSTA are 
removed one by one 

from OS body

21. RSTA are 
vented and 
gasses are 
collected

22. RSTA are cut 
below hermetic 
seal and above 

alumina

23. RSTA halves are 
separated and samples 

are curated

EEV Disassembly

Breach Room

COS Disassembly Tube Disassembly

First Isolator Second Isolator

5. SCV moved to first isolator

20. RSTA 
are moved 
to second 

isolator

ISO Level: 6
Temperature: 20C 
Pressure: 1 atm
Atmosphere: Air
Humidity: 30%

ISO Level: 4
Temperature: 20C 
Pressure: 1 atm
Atmosphere: Nitrogen
Humidity: 0%

ISO Level: 3
Temperature: 20C 
Pressure: 1 atm
Atmosphere: Nitrogen
Humidity: 0%

SCV Disassembly PCV Disassembly OS Disassembly



Tube Disassembly Tools
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• Three conceptual tools 
• Demonstrate the various tube 

opening processes
• Published IEEE Paper!
• High level; no detailed design

Puncture Tool

Tube Cutting Tool

Sample Extraction ToolGas Extraction Tool

https://ieeexplore.ieee.org/document/9438243


Gas Puncture Trade Space
72

Process Vibration
Chip/Dust 
Production

Potential 
Loss of Gas

Tube 
Deformation

Sample 
Composition 

Affected
Introducing 

Contaminant Complexity
Overall 

Risk

Center Punch 
with Arbor 

Press Medium Low Low Low No Low Low Medium

Center Punch 
with Jackscrew Low Low Low Low No Low Low Low

Standard Drill 
Bit High High Medium Medium Low Low Low High

Step Bit Medium Medium Medium Medium Low Low Low Medium

Rotary Cutting 
Disc High High Medium Low Medium Low Low High

Slide Hammer High Medium Low Medium Medium Low Low Medium

Laser Cutter Low Low High Low High High High High

Melting and 
Inserting Tool No No Low High Very High No High High

Suggestion: Using a center punch with a jackscrew to create a slow and continuous pressing motion. 
Small hole the size of tool tip will be created with little chip production for gas extraction

Testing has proven the capability of this tool with arbor press but jackscrew design has not been 
tested



Robotic Transfer Arm 
(RTA) Kinematics
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Mars Sample Return Mission

Winter 2021



RTA Kinematics Simulation
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Program Features

75

• Forward and Inverse Kinematic simulation of 3DoF Planar RTA
• Specific poses, linear path planning, step size, animation, elbow transitions
• Calculates joint torques

• Assuming arm moves slowly; static analysis
• Clearance checks with NTE Volumes
• Optimizing script to decrease link length and decrease joint torque

• Parameter Search
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𝑿𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴_𝑰𝑭

𝑿𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭

𝒀𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭
𝒀𝑨𝑹𝑴𝟎

𝑿𝑨𝑹𝑴𝟎



MATLAB Joint Optimization
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• Created a cost function that seeks to minimize total link length, and ultimately find 
the lowest torque generated

• Brute force, optimization 

INPUTS: Length of Link 1, Link 2, Link 3 as well as Joint 1 X,Y position
OUTPUTS: Configuration with lowest total torque

PSUEDO CODE
For Link1 Length Bounds:
 For Link2 Length Bounds:
  For Link3 Length Bounds:
   For J1 X position Bounds:
    For J1 Y Position Bounds: 
   if: iterations L1, L2, L3, X1, Y1 can meet the main kinematic frames, store this combination and 
the sum of link lengths
   else: record the combination and move onto next iteration

→ For solutions that close, choose lowest torque out of the available results

Results:
• Took a day to run (using multithreading) but ultimately worked!
• Optimized link lengths informed 3D printed RTA design



Chat Controlled 
Twitch Robot

Personal Project

Winter 2024



Objective
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Background:
• In 2014, Twitch Plays Pokemon was a popular streaming channel 

where users completed the game through Twitch Chat commands
• My personal objective was to create a robot that streams itself 

and is remotely controllable through Twitch Chat

Requirements:
• Fully autonomous (stand-alone system)
• 2DoF camera control (pan/tilt) 
• Chat integration
• Permanently streaming

Technologies Used:
• ROS2
• MicroROS
• Teensy / Raspberry Pi / Servos
• Arduino C/C++ 
• Networking (UART, SSH)
• OpenCV,  Video4Linux (V4L)
• Linux (Ubuntu)

Twitch Plays Pokemon

Twitch Stream Link

Twitch Robot Setup Live Twitch Stream 

https://www.twitch.tv/smockodockoiot


Demonstration Video
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Twitch Robot 
Demonstration

https://www.youtube.com/watch?v=-43KEsuk_j0
https://www.youtube.com/watch?v=-43KEsuk_j0


Mechanical Design
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• Simple Pan-Tilt Camera Design
• SG90 Servos use 5V from Raspberry Pi (convenience)

• 2 Degrees of Freedom (Pan, Tilt) that go from 0-180deg
• Camera works with Raspberry Pi by using Video4Linux (V4L) 

drivers / ROS2 package sourced from online

Servo 2

Servo 1

Raspberry Pi Cam

Raspberry Pi

Teensy
CP2102 

Debugger

180°

90°

0°

Servo 2 Axis

90°

Servo 1 Axis

0° 180°



Axis Orientation
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Servo-based Definition

Camera Frame Definition

90-X

• Objective is to map the coordinates 
that the viewer sees, to the actual 
coordinates of the servo motors

• Makes for intuitive user experience as 
a centered position is [0,0]



High Level CONOPS
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2. User Inputs Chat Command

Command: !move_servo <servo_num> <servo_pos>

3. Message is parsed by Chat Bot for:
1. Servo Number (servo_num, [1 or 2])
2. Servo Position (servo_pos, [0 to 180°])

1. Live Stream is Started 

4. Command is sent 
to servo via. Teensy

5. Servo moves 
to new position

6. Teensy reports 
motion is complete

7. Chat bot is open 
to new commands

8. Camera image to 
stream is updated 
(delay exists)

Position Updated

Start: Servo 1 Pos = 130° Movement from 130° to 90° 

End: Servo 1 Pos = 90°

Chat message

Chat message sent



System Diagram
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Raspberry Pi

(powered via. 

wall)

Servo 1

V4L ROS2 

Node

Servo 2

Teensy

Raspberry Pi 

Cam

Twitch ServerTwitch Chat
TwitchBot 

ROS2 Node

MicroROS 

Agent

TwitchBot 

Stream ROS2 

Node

PWM

UART / Serial

Web 
Socket

DDS

DDS

DDS

Camera 
Serial 

Interface 
(CSI)

OpenCV

/compressed_img

Rotate + 
Update Image

ffmpeg
/servo_pos

(servo position topic)

• 4 Active ROS2 Nodes 
• MicroROS Agent connects 

Teensy to Raspberry Pi

5V

DDS

Hardware
Networking 

/ Interface
ROS2 Twitch

Debugger

UART 
(RX/TX)

/move_servo

(servo movement 

service) DDS
DDS



ROS Architecture 
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TwitchBot Node

- servo1_pos
- servo2_pos

V4L ROS2 Node

MicroROS

Thread 1

Thread 2

Read Chat 
for 

Commands

Parse if 
Valid 

Command

set motion_ready 
= True

Block Execution 
until 

motion_ready == 
False (motion 

complete)

Control Loop

If motion_ready == True

/servo_pos (topic)

Call /servo_motion 
service based on 

servo1_pos, servo2_pos, 
servo_num

If motion_ready == 
False

Update servo1_pos, 
servo2_pos, 
servo_num

Shared variables accessed through mutex lock

Wait until service is 
finished, publish response

motion_ready == False

TwitchBotStream Node

Convert /compressed_img 
msgs to OpenCV2

Control Loop

Rotate Image

Append servo 1, servo 2 
info onto image

Encode FFMPEG

Publish 
/compressed_img 

topic 

Publish to Twitch

Control Loop

Note: Each ROS2 Node is run in its own tmux 
process so that they can be individually 
accessed through SSH from main computer

Request:
- servo_num
- servo_pos

Response:
- end_pos
- success

/servo_motion (service) 

Process /servo_motion 
service call request 

Move servo to 
requested position 

(Arduino servo library)

Send service response 
with servo end position, 

success (if within 2°)

Connect agent (Rasp. Pi) to 
client (Teensy) via Serial



Project Summary
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Summary
• Twitch Bot is currently working as expected and is accessible on Twitch!
• Has been tested to run for a week straight without any disruptions or network drops
• Latency mainly depends on user's internet speed (Twitch App works best)

Potential Improvements:
• Improve internet connection for higher quality upload speeds on Raspberry Pi
• Add additional commands to move to specific waypoints (i.e. !kitchen, !couch)
• Improve clarity of command arguments (add diagrams to the stream)
• Improve mechanical setup (higher quality servos)

https://www.twitch.tv/smockodockoiot


MedMate

Personal Project

Flowers IoT Hackathon Winning 
Submission

Fall 2020



Flower Invention Studio IoT Hackathon Objective: Design a custom IoT Prototype within two weeks to 
solve a home automation task

Solution:

• MedMate, a device that helps patients and caretakers monitor medicine intake 

Two Forms: pill bottle monitor and a pill dispenser

•  MedMate tracks:

1. when a user should take their prescription

2. senses when a user has taken their medicine, and then 

3. logs this information in a database that is presented on a webpage

• Winning submission for Flowers Invention Studio IoT Hackathon

– Worked with one other partner who focused primarily on web development

– I designed the product, state machines, device code

– Completed remotely!

 

References

• Hackathon Submission Link (with video)

• GitHub Link

MedMate Description

Pill Bottle 
Monitor

Pill Dispenser

https://devpost.com/software/medmate
https://github.com/migueldlr/medmate
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MedMate 
demonstration Video

https://www.youtube.com/watch?v=uWqPvaWqItg
https://www.youtube.com/watch?v=uWqPvaWqItg


Hardware/Software Used
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Tools Used: 
• Ender3 Printer (personal printer)
• Solder

Software Used: 
• Arduino C (C/C++) 
• Eclipse Paho MQTT Python client (Python) 
• Cloud Firestore (Google Firebase) 
• React (JS) 

Protocols: 
• MQTT (Message Queuing Telemetry 

Transport) 
• I2C (Inter-Integrated Circuit) 



Project Motivation

91

Motivation: Help my Dad and caregiver track medications by:
• reminding patients to take medicine
• allow caregiver to monitor intake history 

Design Philosophy:
1. Low profile 
2. Cheap 
3. Simple hardware 
4. Simple user interface 
5. Interfaces with any standard pill bottle 

ESP32 was our chosen controller because it is configurable with the Arduino client and 
has full IoT functionality. The chosen network protocol was MQTT, as it is designed for 
simple communication between a controller and host server. 



1. User enters their 
prescription 
information

2. Server keeps track of 
when user should take 

medicine 

3. User is notified to 
take medicine

4. Pill bottle is taken off 
MedMate

6. Time of Intake is 
uploaded to Database

5. Pills are consumed and 
bottle is put back on 

MedMate

7. Patient History shown 
on Webpage

MedMate Pill Bottle Monitor Storyboard
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Final Prototype (Pill Bottle Monitor)

Pill Bottle

M3 Screws
Top Lid

VCNL4010 
Proximity 
Sensor

Main Housing

Multicolor LED

ESP32

GND

3.3V

SCL (P22)

SDA (P21)

VCNL4010 

SCL

SDA

GND

3.3V

Red (P32)

Green (P33)

Blue (P25)

Multicolor LED
Red

Green

GND

Blue

220Ω

220Ω

220Ω

• Uses Proximity Sensor to sense pill bottle presence
• Added LED for debugging/clarity
• Fits common pill bottle diameters



Pill Tube

Pill Holder
VCNL4010 
Proximity Sensor

SG90 Servo

Sorting Piece
Rotating Cam

Pill

Pill

Final Prototype (Pill Dispenser)

• Actuates using servo and rotating cam to release pills at medication time
• Controls how much medicine the user can take. 

• Still uses proximity sensor to detect if pill has been taken
• Can be part of a larger assembly – designed for demonstration purposes



• Connect to MQTT Broker
• Subscribe to Server Topic
• ReadyToTake Variable set to 

FALSE

• Wait for Server-side ACK 
JSON with register info

• Device initialized as 
prescription/”free tracking”

CALLBACK
• Server-side Interrupt
• Reads in JSON, sets 

ReadyToTake Variable as 
True

ReadyToTake == True
True False

State 0:
• Read if pill bottle is 

present via. Sensor
• Green LED

Bottle no 
longer present

State 1:
• Start a timer

Instant 
Transition

State 2:
• Wait for bottle to 

return
• Yellow LED

Bottle does not 
return in 30 

seconds

Alert!
• Alert is sent to 

database and 
recorded, then 
shown on webpage

• Red LED

Instant Transition

State 3: 
• JSON message is sent to 

server with time of intake  
(when the bottle is 
returned)

• ReadyToTake set to FALSE

Bottle is 
returned

State 4:
• Read if pill bottle is present via. Sensor
• Purple LED

State 5:
Start a 
timer

Bottle is 
not present

Bottle is 
present

DO 
NOTHING 

☺!

State 6:
• Wait for bottle to 

return

Bottle is 
returned

Bottle does not 
return in 30 seconds

MAIN LOOP

SETUP

MedMate Pill Bottle Monitor State Machine



Exobiology Extant Life Surveyor 
Robot Sampling System

Senior Capstone – JPL

Fall 2021

96



Background & Problem Statement

• Exobiology Extant Life Surveyor (EELS) 

– Bio-inspired snake-like robot

– Traverse Enceladus’ icy ocean-world 
terrain to search for life

• Front nose segment must be designed to:

– Collect sub-glacial liquid samples

– Gather environmental data

– Travel over icy terrain and underwater

• Impact

– Understand factors contributing to 
melting glacial icecaps

– Explore glacial moulins and crevices 
traditionally inaccessible to humans

– Determine conditions required to 
sustain life

Personal Contributions: Project Management, 
Mechatronics / Code Design,  Literature Research



System Requirements
EE

LS
 S

ys
te

m
 

In
te

gr
at

io
n

• Fits within Ø12cm 
X 50cm cylinder

• Withstands icy 
environmental 
conditions

• -20 to 20°C

• 0 to 150psi

• 0 to 2m/s flow

• Withstands 
traversal through 
environment

• Powered by 48V, 
5A

Li
q

u
id

 S
am

p
lin

g 
Sy

st
em

• Acquires 2 
separate 1L 
samples of liquid

• Sterilizable 
collection system

• Easily removable
liquid samples

• Fill at rate of 
0.5L/min Se

n
so

r 
D

at
a 

C
o

lle
ct

io
n

• Gather pressure, 
temperature, 
aquatic chemistry, 
and imagery data

• 0°C minimum 
sensor operating 
temperature

• -20°C minimum 
sensor storage 
temperature
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Preliminary Sketches & CAD

• Initial ideation created an outline of the system 
shape and major mechanical components 

• Both vacuum and pump-based designs were 
considered



Final Design and 
Prototype

Final Design and Prototype
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46cm12cm

Mechanical: Overview

Liquid 
Collection

Liquid Storage

Electronics 
Cavity

EELS 
Connection



Mechanical: Liquid Collection

Intake

2× Presterilized 
Sample Bags

2× Solenoid 
Valves

Peristaltic 
Pump

Wye 
Valve

Flow Meter

Pressure 
Regulator

2× Manual 
Bag Valves

1

2

3 4

5
6 7

8



Electrical Overview

• Flow sensor to detect when 
bag is full

• Humidity sensor to detect 
leaks as small as 5mL

• Two solenoid valves to control 
the filling of bags separately

Arduino

Flow Sensor

2× Humidity 
Sensors

2× Solenoid Valves

12V Power Supply

2× Relays

Peristaltic PumpMotor Driver

5V

12V

Data

Control

103



Wait for 
Input

Open 
Solenoid

Wait for 
Input

Reset

Start Timer & 
Pump

Deactivate 
System

Throw Error

Leak Detected
Humidity > hTH

ERROR LOOP

END

MAIN LOOP

1 Sample 
Collected

2 Samples 
Collected

Full Bag Detected
Flow Speed < vTH

OR
Time > tTH

START

Initialize 
System

Software Overview 
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Final Prototype

Liquid 
Collection

Liquid StorageWater Inlet

Peristaltic 
Pump

2 Normally 
Closed 
Solenoids

2 1L bags with manual 
valve 



Final Prototype Video

Fill Time: 2min 15s (135s)



Humidity Sensor Testing

0 50 100 150 200 250 300 350

Time (s)

45

50

55

60

65

70

H
u

m
id

it
y
 (

%
)

Humidity (%) vs. Time during Filling

Trial 1, Filling

Trial 2, Filling

Trial 3, Ambient (@25min)

• Conducted test trials with previous prototype to determine humidity sensor effectiveness in determining leaks
• Performed ambient, filling, and leak tests
• Rate of change of humidity can be used to determine if leaks occur

Humidity (%) vs. Time during Leak



Future Work

• More refined prototype rated for 
Antarctic conditions

• Test while submerged underwater

– Fit electronics into sampling system

– Create custom PCB and choose a 
lower profile microcontroller 

• Implement full system control using 
flow meter and humidity sensors

• Internal air pressurization

Impact

• Aid in ongoing efforts to understand 
melting glacial icecaps and inaccessible 
glacier moulins

• Provide data of the subglacial 
environment to determine conditions 
suitable to sustain life

Conclusion
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TurtleBot ROS Demonstrations 

Coursework

Spring 2022

109



• Robot to follow a specific object in space while maintaining object in center and 
at correct distance

– Used LIDAR to determine distance to object, PID to maintain relative distance/angle

– Used OpenCV to track object and maintain a specific orientation

OpenCV Object Following with PID



Robot Navigation with Odometry/Lidar
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• Using robots onboard odometry and dead reckoning to navigate to various 
waypoints while avoiding random obstacles

– Writing and subscribing to odometry nodes, robot kinematics

– Filtering noisy lidar data

– Obstacle detection with avoidance routine, while maintaining knowledge of position



Final Project: Sign Classification and Navigation to Goal
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• Robot classifies 6 different signs to navigate towards an end goal

– Used state machine to control robot behavior

• Implemented behaviors if sign is not correctly classified or if robot is stuck

– Trained and used KNN ML model to classify signs with image processing

– LiDAR, filtering, odometry, PID, ROS, image processing, classification



Additional 3D Printed Projects
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• 9:1 Gear Ratio with 3D Printed Gears and 
COTS Bearings

• Demonstration of gear feasibility and 
design with 3D Printed parts

– Skeleton Modeling

3D Printed Gearbox 


	Default Section
	Slide 1: Stephen Mock Work Portfolio 
	Slide 2: About Me
	Slide 3: Skills
	Slide 4: Portfolio Table of Contents
	Slide 5: NASA Jet Propulsion Lab Summary of Work
	Slide 6: Overview – CCRS Testbeds roles held by Stephen Mock
	Slide 7: On Orbit Assembly Testbeds Systems (OATS) Org Chart
	Slide 8
	Slide 9: Preface
	Slide 10: EDT Overview
	Slide 11: EDT Functional Block Diagram
	Slide 12: Main Program Software Design
	Slide 13: Operator GUI Screen
	Slide 14: Operator GUI Screen cont.
	Slide 15: Linear Actuator Movement Block Diagrams
	Slide 16: Checkout Summary
	Slide 17: Checkout Summary (continued)
	Slide 18: Basic Feed Motion Checkout Results 
	Slide 19
	Slide 20: Testbed Background + Objective
	Slide 21: Coordinate Frame Definition
	Slide 22: Implementation Approach
	Slide 23: Main Vector Definition
	Slide 24: Ground Truth Test Approach
	Slide 25: Rotation (Orientation) Ground Truth Tests
	Slide 26: Translation Ground Truth Tests
	Slide 27: Combined Ground Truth Tests
	Slide 28
	Slide 29: Capture, Containment, and Return System (CCRS) in ERO Context
	Slide 30: CCRS Overview for Testbeds context
	Slide 31: PIT Overview
	Slide 32: PIT Software Functional Block Diagram
	Slide 33
	Slide 34: Keysight Power Supply
	Slide 35: Main Functionality of UPS
	Slide 36: Keysight Power Supply Wrapper
	Slide 37: PSU_MGR Setup
	Slide 38: Architecture #1: Asynchronous Control, Multithread
	Slide 39: Architecture #2: Synchronous Control, Single Loop
	Slide 40: Architecture #3: Asynchronous Control, Single Thread
	Slide 41: State Machine for Single Power Supply Node
	Slide 42: Alternative Architecture
	Slide 43
	Slide 44: Thermal Manager Objective
	Slide 45: FlatSat Physical Setup
	Slide 46: Thermal Controller Required Functions (Manual & Commanded)
	Slide 47: Main Functionality of THM_MGR
	Slide 48: THM_MGR Setup
	Slide 49: Architecture #3: Asynchronous Control, Single Thread
	Slide 50: State Machine for Thermal Manager
	Slide 51
	Slide 52: hxpd_mgr
	Slide 53
	Slide 54: Disclaimer
	Slide 55: Mars Sample Return Planning Overview
	Slide 56: CCRS Containment Operations
	Slide 57: Assembly Operations
	Slide 58: The Problem: End Effector Misalignment
	Slide 59: Testbed Requirements
	Slide 60: Testbed Requirements
	Slide 61: Testbed Requirements
	Slide 62: Previous Flight Project Testbeds
	Slide 63: Testbed Configuration
	Slide 64: Test Bed Dimensions
	Slide 65: Additional Photos
	Slide 66: Testbed Operational Concept
	Slide 67: Real Life Photos/Demonstration
	Slide 68
	Slide 69: Disassembly Components
	Slide 70
	Slide 71: Tube Disassembly Tools
	Slide 72: Gas Puncture Trade Space
	Slide 73
	Slide 74: RTA Kinematics Simulation
	Slide 75: Program Features
	Slide 76: Arm Frames
	Slide 77: MATLAB Joint Optimization
	Slide 78: Chat Controlled  Twitch Robot
	Slide 79: Objective
	Slide 80: Demonstration Video
	Slide 81: Mechanical Design
	Slide 82: Axis Orientation
	Slide 83: High Level CONOPS
	Slide 84: System Diagram
	Slide 85: ROS Architecture 
	Slide 86: Project Summary
	Slide 87: MedMate
	Slide 88: MedMate Description
	Slide 89
	Slide 90: Hardware/Software Used
	Slide 91: Project Motivation
	Slide 92: MedMate Pill Bottle Monitor Storyboard
	Slide 93: Final Prototype (Pill Bottle Monitor)
	Slide 94: Final Prototype (Pill Dispenser)
	Slide 95: MedMate Pill Bottle Monitor State Machine
	Slide 96: Exobiology Extant Life Surveyor Robot Sampling System
	Slide 97: Background & Problem Statement
	Slide 98: System Requirements
	Slide 99: Preliminary Sketches & CAD
	Slide 100: Final Design and Prototype
	Slide 101: Mechanical: Overview
	Slide 102: Mechanical: Liquid Collection
	Slide 103: Electrical Overview
	Slide 104: Software Overview 
	Slide 105: Final Prototype
	Slide 106: Final Prototype Video
	Slide 107: Humidity Sensor Testing
	Slide 108: Conclusion
	Slide 109: TurtleBot ROS Demonstrations 
	Slide 110: OpenCV Object Following with PID
	Slide 111: Robot Navigation with Odometry/Lidar
	Slide 112: Final Project: Sign Classification and Navigation to Goal
	Slide 113: Additional 3D Printed Projects
	Slide 114: 3D Printed Gearbox 


