
Stephen Mock Work Portfolio

Link to Non-PDF Version
with Videos

https://docs.google.com/presentation/d/1u2kjO82EMSdsTsCOzpUseNvUShBe4dv0/edit?usp=drive_link&ouid=100563944188690211750&rtpof=true&sd=true
https://docs.google.com/presentation/d/1u2kjO82EMSdsTsCOzpUseNvUShBe4dv0/edit?usp=drive_link&ouid=100563944188690211750&rtpof=true&sd=true

About Me

• Graduated with Bachelor’s and Masters in Mechanical Engineering at Georgia Tech
• Concentration in Robotics

• Worked at NASA JPL, iRobot, SharkNinja
• Interested in space, consumer products, IoT

• Enjoy machine design, mechatronics, coding, robotics
• Outside of work

• Sports, Music, IoT Projects
• Contact Info

• sjmock99@gmail.com
• Personal Website

mailto:Stephenbusiness.me@gmail.com
http://sjmock99.github.io/

Skills

Hardware:
• CAD Design

• SolidWorks, Creo
• EPDM

• Prototyping
• 3D Printing, Laser Cutting
• Mill, Lathe, etc
• Soldering

• Controllers / Controls
• Arduino, ESP32, Teensy
• Raspberry Pi, Intel NUC
• PID
• Robot Kinematics

• Sensors
• Force Torque (FTS), Thermocouples, IMU,

Encoder, Infrared, Ultrasonic, Hall,
Humidity/Temperature, Laser Displacement

• Components
• Stepper Motors, Brushed Motors, Motor

Drivers, 8020, Servos, Relays, Power Supplies,
Thermal Controllers, various electronics

Software:
• Programming Languages / Frameworks / OS

• Python, C/C++ [for Microcontrollers], MATLAB,
LabView
• Basic HTML, CSS, JS, Java

• ROS1, ROS2, MicroROS
• Linux (Ubuntu)

• Networking / Protocols
• Serial Protocols: I2C, SPI, UART
• MODBUS TCP, TCP/IP, SSH, VISA, SCPI
• MQTT

• Applications
• MATLAB, Git, SciKit Learn (Machine Learning),

OpenCV, Linux, Jupyter Notebook, Notion,
LabView, PlatformIO, VSCode

• NASA JPL Work

– End Effector Development Testbed (EDT) V&V (Summer 2023)

– Laser Transform Module for End Effector Development (EDT) Testbed (Summer 2023)

– Software Development Summary of Work (Fall 2023)

– End Effector Initial Developmental Testbed (Spring 2020 - Summer 2021)

– Mars Sample Return Handling Concept of Operations (Winter 2021)

– Robotic Transfer Arm (RTA) Kinematics (Winter 2021)

• School and Personal Projects

– Chat Controlled Twitch Robot (Winter 2024)

– Flowers Invention Studio Hackathon Winning Submission: MedMate (Fall 2020)

– Senior Capstone: EELS Robot Sampling System (Fall 2021)

– TurtleBot ROS Demonstrations (Spring 2022)

Portfolio Table of Contents

4

NASA Jet Propulsion Lab
Summary of Work

Robotics Mechanical Engineer
• February 2023 – February 2024
Mechanical Engineering Intern/Co-op
• May 2020 - August 2021

5

The decision to implement Mars Sample Return will not be finalized until NASA’s completion of the National Environmental Policy Act (NEPA)
process. This document is being made available for information purposes only.

6

Overview – CCRS Testbeds roles held by Stephen Mock

2/27: Start 5/1: EFT Cancelled

8/3: EDT Scope changed from CCRS to SRL

11/9: CCRS Program Suspended

End Effector Functional Testbed
(EFT) Support Mechanical

Engineer

End Effector Development
Testbed (EDT) CogE, V&V and

Checkout Campaign

On Orbit Assembly Testbeds
Systems (OATS) CASAH

Support Engineer

Org chart on next slide

11/28: EDT Delivery Review4/18: EFT Tabletop

11/6: OATS PDR

7

On Orbit Assembly Testbeds Systems (OATS) Org Chart

Testbed Management (A01)
OATS Lead/CAM – Amila Cooray (352A)

Lead SE – Vladimir Arutyunov (347R)

Testbed Electrical (C01)

EGSE Lead – Emilio Vazquez (1.0) (337C)

EGSE Support – Jose Fernandez (0.25)

(337C)

Support Engineer – Heidy Kelman (0.5)(347A)

Harness Engineer – TBD (337C)

Systems Engineering (A01)
RSE – Vladimir Arutyunov (347R)

MSE – Christine Gebara (355L)

Controls Engineer – Teo Wilkening (347A)

Operations Engineer – Anas Delane (347R) (0.5)

Testbed Software (D01)

CASAH Engineer – David Kim (0.5) (347G)

CASAH Support Engineer –TBD (1.0)(347G)

CASAH Support Engineer – Stephen Mock

(347C)

Labview Engineer – Michael Errico (0.5) (3468)

Testbed Mechanical (B01)

PIT Structure Engineer– Christine Gebara (355L)

EDT Cog-E – Stephen Mock (347C)

PIT Testbed CogE – Taylor Sun (355A)

Testbed Engineer – Denise Garcia (355A)

Testbed Engineer – Kelsy Coston (355A)

Testbed Engineer– Stephen Mock (347C)

Testbed Engineer – Stephen Gerdts (347C)

APX Student – Matt DiMarzio (355H)

APX Student – Joy Liu (347R)

Designer – Leon Huntsman (0.5) (355D)

Designer – Anasheh Tooroosian (0.5) (355D)

Structural Analyst – Mike Beale (0.25) (355H)

Technician – James Bailey (0.5) (357C)

Technician – John Phu (0.5) (357L)

Manufacturing Engineer – Ryan Scherich (0.5) (357A)

Thermal Support – Juan Villalvazo (0.25) (353F)

8

End Effector Development
Testbed (EDT) V&V

Mars Sample Return Mission

May 2023 – August 2023

Preface

9

History
The End Effector Testbed (EDT) was created as part of the Capture Contain Return System (CCRS) Testbeds team to provide a
venue to test prototype CCRS end effectors starting in Summer 2022. The objective of the testbed was to measure force and
torque data during insertion for misaligned interfaces. It was a successor to a previous testbed for which the inner hexapod was
originally purchased. With increases in load requirements, a larger 8020 structure and linear actuator were implemented for
high axial loading and clocking moments. An ExoHex was designed to enable the inner hexapod to still be used for precise
positioning, without having to survive high loads. EDT V&V started in May 2023, but was later rescoped in August 2023 to be
delivered to the Sample Retrieval Lander (SRL) team in November 2023. As a result, the purpose of the testbed and checkout
tests were focused on general functionality rather than CCRS specific implementation. This package highlights the capabilities of
EDT, as well as the performed checkouts, and reference information. The checkouts relate to validating the basic functionality of
the testbed, particularly for safety purposes.
JPL Team
• EDT V&V: Stephen Mock (347C)
• EDT Software: Michael Errico (3468)
• EDT Design / Build / History:

• Vladimir Arutyunov (347R)
• Stephen Gerdts (347C)
• Jake Chesin (347B)
• Heidy Kelman (347A)

• EDT CAD: Heidy Kelman (347A)

EDT Overview

10

Design Intent: Simulate misalignments in 6DoF such that forces/torques can be
measured during end effector functions

Loosen

ExoHex Legs

Move Inner

Hexapod to Position

Lock down

ExoHex Legs
Demate Inner and

ExoHex

Linear Actuator

moves to preload*

Linear Actuator backs off

and resets to free space

*Forces/Torques
measuring during whole

operation

CONOPS

Linear Actuator

moves to contact*

Linear Actuator
 (Bosch Rexroth EMC-040)

FTS (ATI Omega 160)

Positioning Hexapod
(PI H-840.G2A)

Load Shunt
Hexapod (ExoHex)

Laser Assembly
(ILD1420-50)

Linear Ball Bearings

y
z

x

Bosch Rexroth EMC-040
• 305 mm Stroke
• 3.4 kN rated peak axial

load
• Absolute encoder
• Optional limit switches

(not installed)

ATI Omega 160
• Dual Calibration
• High Load: SI-2500-400
• Low Load: SI-1000-120

PI H-840.G2A
• 392N Fx load capacity

(normal orientation)
• ±50mm lateral
• ±25mm vertical
• ±15° rotation (tip/tilt)
• ±30° rotation (clocking)
• Absolute encoder

ExoHex
• 31kN axial load capacity at

zero position
• based off single leg

proof test to 5500N
• full assembly not

proofed
• ±10mm lateral
• ±1.15° rotation (tip/tilt)
• ±0.57° rotation (clocking)

• Tested values

Main Component Capabilities
• ExoHex for high loads

• Inner hexapod for precise positioning
• ExoHex can always be detached

• LabView software for Operator GUI and
Control

• FTS recording during test and for force
limiting
• NI DAQ 9205

• Interlock-based E-stop
• Feed Motion Functionality

• Freespace Move
• Move to Contact
• Move to Preload / Move to No Load

• Hexapod coordinate frame changes
• Laser distance measuring capability
Not Fully Checked Out:
• Stiffness Characterization via. laser assembly
• ExoHex assembly proof loading
• Linear actuator proof loading
• Hexapod coord. frame changes in LabView

Functional Capabilities

Electronics

Locking casters

End Effector

Functions

Testbed coordinate system

https://www.ati-ia.com/products/ft/ft_models.aspx?id=Omega160
https://www.pi-usa.us/en/products/6-axis-hexapods-parallel-positioners/h-840-6-axis-hexapod-700810?gclid=CjwKCAjw7oeqBhBwEiwALyHLM_KG-qEGtypR2N1Ls6Lbl83W6OR-dlbfu_7Muo9clhHvMbi7s8vdrhoCW_wQAvD_BwE#specification

Electronics

Ethernet
Switch

Test Apparatus

GSE Feed Stage

GSE FTS (1x)

Control System

11

EDT Functional Block Diagram

EGSE Software MGSE Test Article

Reads Commands Command/ReadPowers

Hexapod
Controller

Feed Stage
Controller

[TBD “Station” MGSE]

Operator

E-Stop

NI DAQ 9205

LabView

GSE Hexapod

Computer

FTS Controller
(1x)

UPS
Power Strip

120V AC

24V DC Power
Supply #1

Misc Digital I/O

GSE Lasers

Laser
Controller

*Components for the CCRS EE removed

Main Program Software Design

12

Process User
Input

Collect Telemetry
Safety
Check

Halt
System

Fault

Process Linear Actuator
Feed Commands

Main Loop (10 Hz)

Global FTS
Limits

E-Stop Button

Program
Start

Configuration File:
• Linear Actuator Feed Command Parameters (position/force limits, speeds)
User Inputs:
• Linear Actuator Feed Commands

• Free-space move
• Move to contact
• Move to pre-load
• Move to no-load

• Hexapod Free-space Position move
• Hexapod speed

Telemetry:
• Hexapod

• Absolute Position (X, Y, Z)
• Absolute Rotation (XRot, YRot, ZRot)

• FTS
• Force (Fx, Fy, Fz)
• Torque (Tx, Ty, Tz)

• Linear Actuator
• Absolute Position
• Speed

E-Stop: Full system halt with physical E-stop but system continues telemetry reading
Global FTS Limits: Hard-coded and set on program start, halts system if global limits
are exceeded during any operation

Config
File

Software Written by Michael Errico

Save
Telemetry to

File

Operator GUI Screen

13

FTS: Fx, Fy, Fz

FTS: Tx, Ty, Tz

Data Filename
Settings

FTS Telemetry

Linear Actuator
Telemetry

Hexapod
Telemetry

System Halt and Clear

Error Status
Indicators

Linear Actuator
Feed Command

Parameters

Linear Actuator
Move commands

Testbed Status

Other testbed
functionality (moving
hexapod, etc)

Operator GUI Screen cont.

14

Linear
Stage
Errors

Hexapod
Errors

FTS
Errors

Clear
Instrument

Global Force
Limit Indicator

Instrument TabError Tab

Hexapod
Commands

Linear
Actuator

Commands

Settings Tab

Global FTS
Limits

Linear Actuator Movement Block Diagrams

15

Linear Actuator Free-space Move:
- Higher speed position move with pre-defined
limits
- Very low force threshold

Linear Actuator Move to Contact:
- Slow movement to contact until force threshold is passed

Linear Actuator No-Load Movement:
- Reverse movement to reduce force to near-zero

Move to Preload:
- Slow forward movement until target force is within force
range

`

Checkout Summary

16

ExoHex Misalignment [09]
Objective: Check for potential collisions between ExoHex strut legs and Inner
Hexapod top plate during misalignment, and during potential demate motions
(simulated by a hexapod shield).
Result: With the tested subset of misalignments (27 tests), no ExoHex struts were
close to collisions. This however is only done for a smaller subset of misalignment
and should be performed with actual test misalignments.

ExoHex Misalignment Test CONOPs

Basic FTS Checkout [02]
Objective: Confirm the coordinate system of the FTS for future coordinate
transformations.
Result: FTS frame tracks as expected, and coordinate frame change to testbed
frame maps correctly

FTS Coordinate Frame

Basic Hexapod Movement [06]
Objective: Move to the maximum 1DoF travel ranges of the hexapod using the
testbed coordinate frame. Additionally, test the behavior of the hexapod to stop
under global force overload error.
Result: Hexapod moves in accordance with testbed coordinate frame (using
vendor provided software) and responds to force overload error in LabView.

Basic E-Stop Checkout [10]
Objective: Verify E-stop capability to stop motion of both the hexapod and
linear actuator during operation, yet still maintain connection and FTS
recording. Test how system halts are handled and cleared. Additional testing to
see how MicroMove responds to an E-stop being pressed.
Result: E-stop halts motion, maintains connection and continues to record FTS
data. System halt can be cleared when E-stop is removed. MicroMove will
error when E-stop is pressed, and hexapod can be restarted after E-stop is
unpressed.

Checkout Summary (continued)

17

Basic Laser Checkout [03]
Objective: Understand the capabilities of the laser nest assembly
when measuring a static cube moving to different positions. Could
potentially be used for future stiffness characterization
Result: Lasers measure relative movement accurately, but small
errors exist which are likely due to overall misalignment of laser
assembly to hexapod.

Basic Feed Motion Checkout [05]
Objective: Test main linear actuator movements (freespace move, move to
contact, and move to preload, move to no load).
• Freespace Move: higher speed movement to bring the linear actuator to a

specific position, with very low force threshold.
• Move to Contact: Lower speed movement which moves to a force threshold

and stops when it is exceeded (no tolerance).
• Move to Preload: Lower speed movement which moves to a specific force

value with a given +- tolerance. Meant to reach the desired preload given by
the test requirements.

• Move to No Load: Reverse “Move to Contact”, in which the actuator moves
away from contact so that Free-space Moves can be commanded.

Result:
• Linear actuator program demonstrated its intended use for all four different

types of movements through applying a specific preload to an aluminum
can.

• Linear actuator triggers halt when overall testbed force thresholds are
exceeded, preventing users from inputting new commands.

EDT Laser Nest and Coordinate Frames

Basic Feed Motion Checkout Results

18

Move to Contact: 13.87N

Case 2, Test 2
• Move to Contact to 10N, system stopped at

13.87N

Move to
Contact:
12.75N

Move to Preload: 27.64N

Case 3, Test 2
• Move to Contact to 10N, system stopped at

12.75N
• Move to Preload to 25N, system stopped at

27.64N

Move to Contact
Demonstration (video)

Notes:
• The system does not halt perfectly as the force build-up

occurs quickly; thus, the system does not stop exactly
when the force threshold is crossed.
• Move to contact speed: 1mm/s
• Move to preload speeds 0.5mm/s

• There is some compliance in the aluminum can such that
when the linear actuator stops, the force decreases

Move to Contact: 56.70N

Case 3, Test 3
• Move to Contact to 50N, system stopped at

56.70N

Compliance

Laser Transform Module for End
Effector Development (EDT) Testbed

Mars Sample Return Mission
May 2023 – August 2023

Testbed Background + Objective

20

Objective: Characterize stiffness of ExoHex top plate under proof load
1. Datum (cube) mounted to top plate is considered rigid with hexapod top

plate which will deform under external load
2. Lasers points to cube and measure changes in position in free space due to

distortions
3. Using 7 lasers, perform transform calculation to define full homogenous

transform of cube

Linear
Actuator

FTS

Laser
Module

ExoHex
Laser
Cube

Inner
Hexapod

Datum Cube

1 2 3

54

6
7

ExoHex Top
Plate

Laser Bracket

Lasers (Numbered)

60mm

End Effector Developmental Testbed

Z

Y

X

Testbed
Frame

Z

Y

X Testbed
Frame

Y

X

Z

Hexapod
Frame

Y

X

Z Hexapod
Frame

Coordinate Frame Definition

21

Datum
Cube

1

4 6
7

5

2 3

1
2

3

54

6
7

ExoHex Top
Plate

Laser
Bracket

Lasers (Numbered)

60mm

Laser #
definitio

n
X

Y

Z
Laser
Frame

Z

Y

X

Testbed
Frame

Y

X

Z

Hexapod
Frame

• Separate CAD model to simulate rotations / translations
• Lasers represented as (very small diameter) extrusions

up to surface for ground truth generation from nominal
laser positions → SolidWorks sensors

• Laser Frame → Testbed Frame is Ry(-90)*Rx(90)

Implementation Approach

22

• Define frames of our 7 lasers such that we can perform the IK (inverse kinematics) to
define the full transform of the cube
• Coordinate system is defined on bottom of 3 planes, where n^ is defined
• α and β are constants defined to surface of where lasers hit cube face

• In our case alpha and beta are cube side lengths (4in / 2)
• Reference

Setup
1) Choose a world coordinate frame (origin frame) for lasers

1) Origin frame set at first laser frame (CS1)
2) Create transformations to each of the frames on each of the lasers

1) Z-axis always the pointing towards the cube
2) H_O1, H_O2 (ETC)
3) Pure Z-translation in that coordinate frame from each individual sensors

3) Solve for transform from laser readings in laser frame on cube using equations from
paper for

1) Rotation Matrix
2) Cube Base Centroid Vector

4) Perform transformation from world frame to testbed frame

β

α

Cube Base Centroid

Origin frame (O), same as CS1

2. Cube Base Centroid Vector

N^
1. Rotation
Matrix

X

Y
Z

X
’

Y
’

Z’

https://fornat1.jpl.nasa.gov/casah/ros2/ltm

Main Vector Definition

23

Y

X

Z

Origin Frame (coincident with CS1)

<AB><AC>
B

C

A

O

<OA
> <OB

><OC
>

E

D

O

<DE>

<OE>

<OD>

O

F
G

<OF>

<FG>

<OG>

Defined in Origin Frame
Vector of Interest: <AC> = <OC> - <OA>, <AB> = <OB> -
<OA>

Where <OC> = H03*P3, <OB> = H02 * P2, <OA> = H01*P1
where P1, P2, P3 are the magnitude of the laser (in Z axis)

Defined in Origin Frame
Vector of Interest: <DE> = <OE> - <OD>

Where <OE> = H05*P5, <OD> = H04*P4 and P4, P5 are
the magnitude of the laser (in Z axis)

Y

X

Z
Y

X

Z

Defined in Origin Frame
Vector of Interest: <FG> = <OG> - <OF>

Where <OG> = H07*P7, <OF> = H06*P6 and P6, P7 are the
magnitude of the laser (in Z axis)

Ground Truth Test Approach

24

Perform 3 types of ground truth tests
1. Rotations
2. Translations
3. Combined

• Using CAD, rotate the cube in a specific order
• Laser output from CAD informs inverse kinematics and creates ground truths
• Check rotations by outputting Euler Angles in (ZYX) format

• For tests cases, Δ translations and rotations defined at CUBE centroid
• Cube Base Centroid (centroid of 3 lasers on cube face) may have some

“parasitic” translations due to rotation about a different pivot

Inputs
1. Laser values from CAD
2. Rotations (Euler Angles) for comparison
3. Position vector between Cube Base Centroid and Origin Frame for

comparison
Outputs

1. Rotations (Euler Angles)
2. Position vector between Cube Base Centroid and Origin Frame

Compare
1. Ground Truth Rotation vs. Inverse Kinematic Rotation solution
2. Ground Truth Position vector vs. Inverse Kinematic Position solution

X

Y
Z

Translations and
Rotations defined
at Cube Centroid

Cube
Base

Centroid

Origin

Rotation (Orientation) Ground Truth Tests

25

Test #
Δ X

(mm)
Δ Y

(mm)
Δ Z

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot
Match?

IK Pos.
Match?

1 0 0 0 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 1 0

4 0 0 0 0 0 1

5 0 0 0 1 2 0

6 0 0 0 1 2 3

7 0 0 0 -2 -5 3

Ground Truth Test Cases

Rotation Test Cases
• Test individual rotations, as well as rotations in sequence, as well as with either +/-

signage
• Correctly tracked Euler Angles (for both positive and negative), as well as sequences of

Euler Angles
• Rounded (to the first decimal place) → might be due to sig-figs on laser output

from CAD
• When rotating about centroid of cube, the cube base centroid also translates, which was

captured in the positional inverse kinematics

Translation Ground Truth Tests

26

Ground Truth Test Cases

Translation Test Cases
• Test individual translations, as well as multiple translations, as well as

with either +/- signage
• Tests worked in accordance with translations (and had no rotations)
• Rounded (to the first decimal place) → might be due to sig-figs on laser

output from CAD

Test #
Δ X

(mm)
Δ Y

(mm)
Δ Z

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot.
Match

?

IK Pos.
Match?

1 0 0 0 0 0 0

2 +2.5 0 0 0 0 0

3 -2.5 0 0 0 0 0

4 0 +2.5 0 0 0 0

5 0 0 +2.5 0 0 0

6 +2.5 +1 0 0 0 0

7 +2.5 0 +1 0 0 0

8 0 +2.5 +1 0 0 0

9 +2.5 +1 +5 0 0 0

Combined Ground Truth Tests

27

Ground Truth Test Cases

Combined Test Cases
• Test both translations and rotations at centroid of cube

• Every case works for the inverse kinematics!
• Rounded (to the first decimal place) → might be due to sig-figs on laser output from CAD

Test #
Δ X

(mm)
Δ Y

(mm)
Δ Z

(mm)
Zrot
(deg)

Yrot
(deg)

Xrot
(deg)

IK Rot.
Match

?

IK Pos.
Match?

1 5 7.5 10 -2 -5 3

2 -5 -7.5 -10 -2 -5 3

3 -5 -7.5 -10 2 5 -3

4 1 3 5 2 0 0

5 5 3 1 0 3 0

6 3 2 1 -5 0 0

Mars Sample Return Mission

August 2023 - January 2024

Software Development Summary of Work

Capture, Containment, and Return System (CCRS) in ERO Context

ERO CCRS

Testbeds for V&V of these
interaction functions

CCRS Overview for Testbeds context

1

Lid+OS (LOS) Install3

2

OS (Orbiting Sample)

OS Pickup

Integrated Lid Pickup

Station 3
- Using EE, Place Lid + OS (LOS) onto SCV Body
- Using EE, Latch Lid + OS (LOS) into SCV Body

Station 1
- Dock EE to ILA
- Release ILA from LRM
- Using EE, Extract ILA from LRM

Integrated Lid Assembly
(ILA) on Lid Release
Mechanism (LRM)
• Only hardware interactions

during all of Lid Pickup
• ILA: RIP, SCV Lid, ATC, SOLAR

SCV Body
• The vessel the OS comes home in
• Only hardware interactions during all of Lid Pickup

End Effector (EE)
• Robotic manipulator

Gantry

Acronyms:
• Robot Interface to Payload (RIP)
• Secondary Containment Vessel

(SCV)
• Aerothermal Closeout (ATC)
• SCV-OS Latch, Align, and Restrain

(SOLAR)
• Integrated Lid Assembly (ILA)
• Lid Release Mechanism (LRM)
• Orbiting Sample (OS)
• End Effector (EE)

Station 2
- Using EE, Dock ILA to OS (catch ring)

Catch Ring
• Only hardware interactions during OS Docking*
• Provided by PIE to OS team

PIE HardwarePIE Station
Interaction
Functions

RTAS
Hardware

R
SC

E

PIT Overview

y

x

z

Lid Pickup OS Pickup LOS Install

EE

FTS

Removable top plate

FTS

Station holder

3X Comp

Stages

EE Cup

Spacer
Frame

Generalized Configuration

Station

PIT: Pickup and Installation Testbed

Goal: Test and measure station and tool interactions between CCRS end effector and various interfaces
given a specific misalignment in TVAC environment

Hexapo
d

1.8 m
[5.9
ft]

1.4 m [4.5 ft]

LRM
OS-Sim

SCV
Body

Aftbody simulator

PIT Software Functional Block Diagram

NUC-

CTRL

NUC-

OPS

BLUE BOX

FTS

Controllers

(2x)

Thermal

Controller (4x)

Hexapod

Controller

GSE

Cameras

Control System Modules

EtherCAT

MODBUS
TCP/IP

SSH

USB

ECAT

ASCE

SE Card
USB-to-

RS422

Te
st

b
ed

 C
o

n
tr

o
l S

ys
te

m

R
ac

k

R
SC

E
EG

SE
 R

ac
kSwitch Card

USB Ethernet Cable

Network

Switch

USB Device

Distribution

USB Cable

Wireless

Network

Switch

Power

Supply Units

USB

CASAH “Modules”

LVPC

PSU_MGR:

ROS2 Power Supply Package

Keysight Power Supply

Nomenclature
• Module (CASAH Module): represented by psu_mgr, manages multiple

instances of a Power Supply Class
• Mainframe: Refers to an instance of the Power Supply Class and represents

a single mainframe which houses multiple channels
• Channel: One of the four smaller power supplies present in a mainframe

which have their own voltage, current, power requirements
• Assumes each frame has four channels – some frames have two

channels combined - have not tested this behavior

• Objective: Create a CASAH Module that can manage multiple Keysight Power
Supplies (PSU) with the core functionality of

1. Initialize PSUs
2. Query and Publish Telemetry
3. Allow operators / other modules to

1. Clear errors
2. Change channel outputs (ON/OFF)

• Intended use was to turn ON/OFF motors for RSCE Rack Sequencing
• Previous scope included error management -> later moved to FP_MGR

Keysight Series N6700

Channels (4x)

Mainframe (1x)

PSU Output Channels

Main Functionality of UPS

Hardware Pre-existing Functionality:
• Over Protection settings to Protect Hardware

• Channel will stop outputting during
Overvoltage (OV) or Overcurrent (OC) event

Needed Software Functionality:
• Turn on/off Power Supply Channels
• Read/Set Voltage Set Points, Current Limit
• Read/Set Overvoltage Set Points
• Read/Set Overcurrent Set Points
• Read Overvoltage Errors
• Read Overcurrent Errors
• Read Voltage Output
• Read Current Output

PSU can be separately programmed via. screen

PSU Output
Screen

PSU Overvoltage
Protection Settings

PSU Voltage Settings

Current Limit
Voltage Set Point

Keysight Power Supply Wrapper

Instance Data:

• ID

• usb_addr

• output_states []

• currents []

• current_limits []

• voltages []

• voltage_setpoints []

• error []

• error_enum[]

• overvoltage_setpoints []

• overcurrent_enables []

• fault

Functions:
• Set/Read Output States

• Set/Read Current Limit Set

Points

• Set/Read Voltage Set Points

• Set/Read Overvoltage Set Points

• Set/Read Overcurrent Enable

State

• Read Error

• Read Error Enum

• Read Current Measurement

• Read Voltage Measurement

• Read Fault

Communication & API:
• Uses Virtual instrument Software Architecture

(VISA) API
• Can communicate using TCP / USB

• VISA Layer gives specific “VISA”
address to hardware

• NI-VISA Library
• Commands are sent through Standard

Commands for Programmable Instruments
(SCPI)
• EX: OUTP ON, (@2)

• Set channel 2 OUTPUT to ON
• Used PyVISA library -> module written in Python

• Library supports multithreading
• Index of the array corresponds to channel of

mainframe

KeysightPowerSupply.py

• Fault defined as any error on any channel for a single frame

PSU_MGR Setup

PSUID: Power
Supply 1

psu/psu_id/tlm

(unique for each device)

Launch File

telemetry

Launch

Services

PSUID: Power
Supply 2

/psu_mgr

Commander

msg/PsuMsg:

• Array of msg/Psu for full

telemetry stream of all

powersupplies

/psu_msg.msg

NUC

Frame 1 Frame 2

USB HUB

FP_MGR

PSUID: Power
Supply X

Frame X
…

USB

TLM

Architecture #1: Asynchronous Control, Multithread

Power Supply

Unit

Assumed Requirements:
1. Query / Publish telemetry at specific frequency every time
2. Timing of service call timing is not strict; can be performed whenever possible

Thread 1
(Control Loop
@ TBD Freq)

Thread 2
(Service Callbacks)

Query Telemetry

Publish Telemetry

Send Request to

Hardware

Set Instance Data Query Response from

Hardware

Publish Response

Request

Notes:
• Asynchronous control scheme
• Requires multiple communication interfaces

with different threads
• i.e. multiple TCP Clients to the same

server (hardware)
• Keysight Power Supply does not support

multiple interfaces
• Tested multiple clients and

multithreading
• Did not work (I/O errors)

• Vendor claims that the PSU cannot query
multiple requests at the same time

Architecture #2: Synchronous Control, Single Loop

Power Supply

Unit

Thread 1
(Control Loop
@ TBD Freq)

Thread 2
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Flag

Set Instance Data

Publish Response

(i.e. data changed)

Request

Instance Data:

Service Flag

Check Service

Flag

Perform Service

Notes:
• Synchronous Control Loop
• Only one thread can access hardware

at a time
• risks “overrun” in a single cycle if

performing service takes a long
time compared to required
control loop frequency

Assumed Requirements:
1. Query / Publish telemetry at specific frequency every time
2. Timing of service call timing is not strict; can be performed whenever possible

Mutex Lock

Architecture #3: Asynchronous Control, Single Thread

Power Supply

Unit

Thread 1
(Control Loop
@ TBD Freq)

Thread 1
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Instance Data

Notes:
• Asynchronous Control Scheme

• Only one callback runs and
interfaces with hardware at
a time

• Assumes that telemetry output
can be delayed if service call
takes too long
• Need requirements on

control loop frequency
• Chosen architecture since

hardware does not support
multithreading

Assumed Requirements:
1. Query / Publish telemetry at specific frequency is not critical if delayed
2. Service calls should be performed when available (even if blocking)

Send Request to

Hardware

Query Response from

Hardware

Publish Response

Request

Blocking Service Calls
(Same Mutually Exclusive

Callback Groups)

State Machine for Single Power Supply Node

On Node Launch

Publish Telemetry

For ALL PSU

• PSU ID

• Time of Log

• Output States []

• Voltage Set Points []

• Current Limit Set Points []

• Enable OC []

• OV Set Point []

• Voltage []

• Current []

• Output Error State []

• Output Error Enum []

• Fault

Set OV Set Point

Set OC Enable

Set Current Limit

Set Voltage Set

Point

Initialization Function

Parameter by Launch
File

Service Publisher

/psu_mgr.yaml

Launch Function
telemetry

Set Output Off

Set Output On

Relevant Instance Data:

• psu_ arr (psu[])

Service call
/set_output

Runs command to

turn on/off specific

output channels

Return PSU

Output states, etc

Service Call
Set Current

For psu in psu_arr

LOOP: Every 10Hz

Callback

Query Full

Telemetry

Service call
/clear_psu_erro
r

Clears the output

errors for a specific

channel

Return PSU Output

Error State, etc

Notes:
• Single control loops through every PSU

and generates telemetry messages
• Service calls are blocking (mutually

exclusive callbacks)
• Output can be changed during a fault

via. service call
• Handled by FP_MGR

• Stress testing with 1 NUC, 2 PSU, USB:
• 10Hz control loop frequency

B
LO

C
K

IN
G

Alternative Architecture

• Query Error Telemetry

from Devices
Publish error to

Fault Monitor

On Node Launch

Timer Callback

Publish Telemetry

For ALL PSU

• PSU ID

• Time of Log

• Output States []

• Voltage Set Points []

• Current Limit Set Points []

• Enable OC []

• OV Set Point []

• Voltage []

• Current []

• Output Error State []

• Output Error Enum []

• Fault

Set OV Set Point

Set OC Enable

Set Current Limit

Set Voltage

Initialization Function

Parameter by Launch
File

Service Publisher

/psu_mgr.yaml

LaunchFunction
telemetry

Set Output Off

Set Output On

Relevant Instance Data:

• psu_ arr (psu[])

Service call
/set_outpu
t

Runs command to

turn on/off specific

output channels

Return PSU

Output states

Service Call

Parse if Error is

Present

Set Current

LOOP: Every 500Hz

For psu in psu_arr

LOOP: Every 1Hz

Callback Query Full

Telemetry

Service call
/clear_psu_erro
r

Clears the output

errors for a specific

channel

Return PSU

Output Error State

Notes:
• Two control loops

• Faster 500Hz rate for error checking
• Slower 1Hz for telemetry output

• Publishes directly to fault monitorB
LO

C
K

IN
G

THM_MGR:
ROS2 Thermal Controller Package

Thermal Manager Objective

• Objective: Create a CASAH Module that can manage multiple Thermal Controllers the core
functionality of:

1. Initializing Controllers
2. Query and Publish Telemetry
3. Allow operators / other modules to

1. Clear errors
2. Change Alarm Set Points
3. Change Heating Control Set Point

• Controllers originally to be used for TVAC Testing [-50C to 70C]
• Heaters and Thermocouples for closed loop control to set point
• “Thermal Zones” for Single Redundancy
• Watlow PM PLUS PID & Integrated Limit Controller, Omega Heaters, Crydom DC Relays

Main

Scanner

Backup

Main Controller Scanner
Backup

Enabled

External Alarm

/ Cyro Shutoff

Cryo

Shutoff

NO
Relay

NC
Relay

Disable
Heater

Scanner tripped by
Main/heater failure

OR
Scanner failure

Redundancy
Strategy

Enable Heater

Fault

Backup

Single Failure -
Redundancy

Double Failure -
Hardware at Risk

Thermal Zone Concept

FlatSat Physical Setup

Network
Switch

Power
Supply*

Scanner

Main Controller

Backup
Controller

Main Relay Backup Relay

Main TCMain Heater

Scanner TC

Backup TC
Backup Heater

Ethernet
(3x)

Switch (3x)

Aluminum
Plate

Fan

* 120VAC or 24V DC

Thermal Controller Required Functions (Manual & Commanded)

Main Controller
1. Set Control Set Point to T_Set_Point
2. Set Alarm 1 Set Points to T_Alarm_Low,

T_Alarm_High
3. Heat until T_Set_Point [Output 1]

Scanner
1. Set Alarm 1,2 Set Points to T_Scanner_Low,

T_Scanner_High
2. Disable main heaters if T_Scanner_Trip is

reached [Output 2]
3. Engage Relay for Backup Heaters if

T_Scanner_Trip is reached [Output 1]

Backup Controller
1. Set Control Set Point to T_Set_Point
2. Set Alarm 1 Set Points to T_Alarm_Low,

T_Alarm_High
3. Heat until T_Set_Point [Output 1]

Talarm_low

Toperational

Tset point

Tscanner_low

15°C

5°C

3°C

0°C

Tscanner_high

Talarm_high

25°C (TBD)

28°C (TBD)

Hardware Details
• All heating / alarm control is done by controllers onboard processing
• Controller sends PWM signals to heaters to reach temperature

based on TC readings
• Closed Loop (PID)

• Each controller has 2x outputs, alarms
• If alarm is triggered, relays enable / disable outputs with latching
• Alarm set points must be set during operation

• Otherwise, alarm will trip when trying to reach control loop set
point

Main Functionality of THM_MGR

Hardware Pre-existing Functionality:
• PID Heating
• Alarm Output Behavior

Needed Software Functionality:
• Set Control Set Point
• Set Alarm (High / Low)
• Read Temperature
• Read TC Error
• Read Alarm 1,2 State
• Read Heat Power
• Read Alarm 1,2 Set Points (high / low)
• Read Control Set Points

Thermal Controller can be separately programmed
via. screen

• Watlow Controllers use MODBUS TCP
• Write/Read from specific registers (32bit)
• Using PyModbus library – does not support

multithreading

MODBUS Register List

THM_MGR Setup

thm/thm_id/tlm

(unique for each

device)

Launch File

telemetry

Launch

Services

THMID: Controller 1

/thm_mgr

Commander

msg/ThmMsg:

• Array of msg/Psu for full

telemetry stream of all

thermal zones / controllers

/thm_msg.msg

NUC

Ethernet

Switch

FP_MGR

…

Ethernet

THMID: Zone 1

Zone 1

Main Scanner Backup

Controller 1

Single

THMID: Zone X

Zone X

Main Scanner Backup

TLM

Architecture #3: Asynchronous Control, Single Thread

Thermal

Controller Unit

Thread 1
(Control Loop
@ TBD Freq)

Thread 1
(Service Callbacks)

Query Telemetry

Publish Telemetry

Set Instance Data

Notes:
• Asynchronous Control Scheme

• Only one callback
interfaces with hardware at
a time

• Assumes that telemetry output
can be delayed if service call
takes too long
• Need requirements on

control loop frequency
• Chosen architecture since

PyModbus does not support
multithreading

Assumed Requirements:
1. Query / Publish telemetry at specific frequency is not critical
2. Service calls should be performed when available (even if blocking)

Send Request to

Hardware

Query Response from

Hardware

Publish Response

Request

Blocking Service Calls
(Different Callback Groups)

State Machine for Thermal Manager

• Query Telemetry from Devices

Timer Callback

Publish Telemetry

For each Thermal Controller

• Thermal Controller ID

• Architecture

• Time of Log

• Temperature Reading []

• TC Error []

• TC Error []

• Heat Power []

• Control Set Points []

• Alarm 1,2 States []

• Alarm 1,2 (high/low) Set Points []

• Module Faulted?

Service Publisher LaunchFunction
telemetry

Relevant Instance Data:

• thm_ arr[]

Service call
/set_ctrl_set_poin
t

Set heating

control set point

Return

controller

setpoint

Service Call

LOOP: Every 1Hz

For thm_controller in thm_arr

CallbackOn Node Launch

Set Controller Alarms

1,2 (high/low)

Initialization Function

Parameter by Launch
File

/thm_mgr.yaml

Set Control Set Points

Service
call

/set_alar
m

Set an alarm

set point

Return

requested

alarm set point

Set Scanner Alarms 1,2

(high/low)

Service call
/clear_alarm

Send a clear

alarm command
Return

Alarm State
B

LO
C

K
IN

G • Seems to be a large latency during
service and telemetry queues when
using thermal zones (up to 5 seconds)

• Single controller works with 1Hz

V&V

• Performed basic checkouts for Symétrie Hexapod

– Range of Motion

– Stopping with FTS

• Helped with test procedure / actually interfacing with CASAH operator tools,
testbed deployment

hxpd_mgr

https://symetrie.fr/en/hexapods/zonda/

End Effector Initial
Developmental Testbed

53

Mars Sample Return Mission

Spring 2020 - Summer 2021

• The decision to implement Mars Sample Return will not be finalized until
NASA’s completion of the National Environmental Policy Act (NEPA) process

• This document is being made available for information purposes only

• The information presented has been approved through export control and has
been released to be shown to the public

Disclaimer

Mars Sample Return Planning Overview

55

What I worked on!

Pre-Decisional Information – For Planning and Discussion Purposes Only

The CCRS Capture and Containment Module uses an end effector on the Robotic
Transfer Arm to perform a series of assembly tasks to contain the OS, assemble the
OS into the EEV, and maintain the Earth clean zone

CCRS Containment Operations

56Artist's Concept

Assembly Operations

1. PCV Lid
aligned with OS

2. PCV Lid
mated with OS

3. OS aligned
with PCV Base

4. PCV Base and Lid
mated and brazed

5. PCV aligned
with the SCV Base

6. PCV inserted
into SCV Base/EEV

7. SCV Lid aligned with
the SCV Base/EEV

8. SCV Lid mated with
the SCV Base/EEV

9. CAM Lid aligned
with the EEV

10. CAM Lid mated
with the EEV

OS = Orbiting Sample
PCV = Primary Containment Vessel
SCV = Secondary Containment Vessel
CAM = Containment Assurance Module
EEV = Earth Entry Vehicle

The Problem: End Effector Misalignment

58

End Effector Misalignment can be due to a variety of
issues such as:

• Joint errors (encoder inaccuracy/sensitivity)
• Kinematic Errors (model is not 100% true to

real geometry)
• Non-kinematic errors (backlash, stiffness,

temperature effect)

 Objectives:
1. Create a platform to test behavior of Robotic

Transfer Arm (RTA) end effectors when
misalignment is present
• Not testing static preloading of seals due

to higher load requirements
2. Test the capability of mechanical alignment

strategies (e.g., Christmas Tree Insertion, end
effector posts)

3. Measure the forces and torques present
during docking/insertion procedures

Misalignment during docking

Containment
Lid

End Effector
(EE)

Gripping
Feature

End
Effector

Christmas Tree
Insertion (CTI)

Seating
Mechanism

PCV Lid Insertion into OS

Orbiting
Sample (OS)

Testbed Requirements

59

Function Force Required (N) 75% Margined Load Required (N)* Rationale

CTI Insertion 80 140 Load Estimates calculated and provided
from previous work. Magnitudes of values
quite similar to those presented in MSL Bit

Box and M2020 SHA insertion tests.

Braze Insertion 80 117

PCV Grip 200 350

PCV Place 200 350

SCV Lid Grip 200 350

SCV Lid Place 200 350

CAM Lid Grip 200 350

CAM Lid Place 100 175

ERM Lid Grip 200 350

ERM Lid Place 200 350

Load Requirements

Displacement Requirements

Offset Required Rationale

Position (along x-axis) +/- 10 mm
All of the requirements are based off the SHA EE Misalignments. Each of the following

requirements have ≈200% Margin. Additionally, the magnitude of the errors are similar to
those present in the MSL Drill and Bit Box Tests

Position (along y-axis) +/- 10 mm

Angular (about x-axis) +/- 2.86 deg

Angular (about y-axis) +/- 2.86 deg

Clocking (about z-axis) +/- 2.86 deg

* 75% added margin accounts for uncertainty in force required

M2020 SHAMSL Bit Box

EE Misalignment OS Pin Insertion
SHA EE RCCM

(M2020)
Drill and Bit
Box (MSL)

SCS Bit Exchange
(M2020)

Testbed Requirements

60

Function
Stroke Required

(mm)
50% Margined Stroke

Required (mm)*
Rationale

CTI Insertion 65.8 98.7
Stroke Estimates calculated
and provided from current

CAD models of CCRS
Architecture.

Braze Insertion 184.6 276.9

PCV Grip 11.3 17.0

PCV Place 201.6 302.4

SCV Lid Grip 10.4 15.6

SCV Lid Place 88.6 132.9

CAM Lid Grip 19.5 29.3

CAM Lid Place 133.5 200.3

ERM Lid Grip 10.4 15.6

ERM Lid Place 17.6 26.4

Stroke Requirements

* 50% added margin accounts for uncertainty in stroke required

Testbed Requirements

61

Functional requirements the testbed:
• Apply Force
• Provide Motion (6-DoF)

• Provide Initial Alignment Error
• Lateral
• Angular
• Clocking

• Measure Forces (6-DoF)

These requirements can be met using:
• Stewart Platform
• Linear Actuator
• 6-Axis Force Torque Sensor

Test System

X

Y

Z

Lateral – XY plane
Angular – XY Tip/Tilt

Clocking – Z Twist

Z

X
Y

Twist

TipTilt

End
Effector

Lid

Previous Flight Project Testbeds

62

M2020 Tube Retainer Performance
Characterization Testing (2020)

M2020 SHA Insertion/Misalignment
Testing (2017)

MSL Bit Exchange Development Test (2008)

IFACT: Insertion Force & Alignment
Characterization Testbed

Containment Lid*

Linear Actuator
• Attaches to post assembly
• Provides force and travel in Z-

direction Force Torque Sensor (FTS)
• Records docking Force/Torques

between EE and Lid/OS
• Feedback control if overloading

Hexapod
• Movement in 6 DoF
• Mounts SCV (or various) Lids
• Provides misalignment for EE/Lid

interface
• Supports EE/Lid/OS interface load

Testbed Configuration

63

End Effector (EE)*
• Grip/Place various

containment lids/OS
• Test alignment strategies

(cones/CTI)

*These pieces are still in development, not final models

Force Limiter
• Uses springs with preload in order to

mechanically prevent force overload
• Limit switches to electrically stop all

motion if overload occurs

Remote Center of Compliance (RCCM)
• Helps to correct for misalignment

during insertion
• Final design being produced (currently

wire rope isolator stand in)

• Conceptualized and designed
testbed

• Hardware trade studies
• Obtained quotes from vendors
• Procured parts (BoM), assembly

instructions

Test Bed Dimensions

64

32’’

30’’ 9.5’’

30’’

Additional Photos

65

1. Calibrate and align hexapod
to end effector

Testbed Operational Concept

66

2. Move the hexapod in 5 DoF
(lateral, angular, clocking) to
create misalignment

3. Move Linear Actuator down
vertically, begin docking until
• Load reached (350N)
• Switches Triggered
• Timeout

Record FTS Data and reset
alignment

Real Life Photos/Demonstration

67

Mars Sample Return Handling
Concept of Operations

68

Mars Sample Return Mission

Winter 2021

Disassembly Components

69

COS Disassembly Tube DisassemblyEEV Disassembly

OS/
PCV
GSE

First Double Walled Isolator Second Double Walled Isolator

EEV EEV GSE

COS
Sample
Tubes

Gas
Extraction

Tool

Tube
Cutting

Tool

Sample
Extraction Tool

SCV
Removal

Tool

PCV
Removal

Tool

OS
Removal

Tool

1. CAM Lid retention bolts released

2. CAM Lid lifted away from EEV

4. SCV removed from EEV

3. SCV Base – EEV bolts removed

6. SCV has hole
drilled to equalize

pressure

7. SCV Lid latches
are pressed to

release Lid

8. SCV Lid is
lifted away from

the SCV Base

9. Sleeve
deflects pawls

10. COS is gripped
by gripper

11. COS is
removed
from SCV

Base

12. PCV has hole
drilled to equalize

pressure

13. PCV cut along
some TBD

location below
the braze line

14. OS is removed
from the PCV Base

15. OS has bottom
cap bolts removed

16. OS bottom cap is
lifted away from the
OS and atmosphere

sample is curated

17. OS Lid latches are
pressed to release lid

18. OS body
removed from OS

and PCV Lids

19. RSTA are
removed one by one

from OS body

21. RSTA are
vented and
gasses are
collected

22. RSTA are cut
below hermetic
seal and above

alumina

23. RSTA halves are
separated and samples

are curated

EEV Disassembly

Breach Room

COS Disassembly Tube Disassembly

First Isolator Second Isolator

5. SCV moved to first isolator

20. RSTA
are moved
to second

isolator

ISO Level: 6
Temperature: 20C
Pressure: 1 atm
Atmosphere: Air
Humidity: 30%

ISO Level: 4
Temperature: 20C
Pressure: 1 atm
Atmosphere: Nitrogen
Humidity: 0%

ISO Level: 3
Temperature: 20C
Pressure: 1 atm
Atmosphere: Nitrogen
Humidity: 0%

SCV Disassembly PCV Disassembly OS Disassembly

Tube Disassembly Tools

71

• Three conceptual tools
• Demonstrate the various tube

opening processes
• Published IEEE Paper!
• High level; no detailed design

Puncture Tool

Tube Cutting Tool

Sample Extraction ToolGas Extraction Tool

https://ieeexplore.ieee.org/document/9438243

Gas Puncture Trade Space
72

Process Vibration
Chip/Dust
Production

Potential
Loss of Gas

Tube
Deformation

Sample
Composition

Affected
Introducing

Contaminant Complexity
Overall

Risk

Center Punch
with Arbor

Press Medium Low Low Low No Low Low Medium

Center Punch
with Jackscrew Low Low Low Low No Low Low Low

Standard Drill
Bit High High Medium Medium Low Low Low High

Step Bit Medium Medium Medium Medium Low Low Low Medium

Rotary Cutting
Disc High High Medium Low Medium Low Low High

Slide Hammer High Medium Low Medium Medium Low Low Medium

Laser Cutter Low Low High Low High High High High

Melting and
Inserting Tool No No Low High Very High No High High

Suggestion: Using a center punch with a jackscrew to create a slow and continuous pressing motion.
Small hole the size of tool tip will be created with little chip production for gas extraction

Testing has proven the capability of this tool with arbor press but jackscrew design has not been
tested

Robotic Transfer Arm
(RTA) Kinematics

73

Mars Sample Return Mission

Winter 2021

RTA Kinematics Simulation

74

Program Features

75

• Forward and Inverse Kinematic simulation of 3DoF Planar RTA
• Specific poses, linear path planning, step size, animation, elbow transitions
• Calculates joint torques

• Assuming arm moves slowly; static analysis
• Clearance checks with NTE Volumes
• Optimizing script to decrease link length and decrease joint torque

• Parameter Search

𝒀𝑨𝑹𝑴𝟏

𝑿𝑨𝑹𝑴𝟏 𝑿𝑨𝑹𝑴𝟐

𝒀𝑨𝑹𝑴𝟐

𝑿𝑨𝑹𝑴𝟑

𝒀𝑨𝑹𝑴𝟑

𝒀𝑨𝑹𝑴𝟏

𝑿𝑨𝑹𝑴𝟏

𝑿𝑨𝑹𝑴𝟐

𝒀𝑨𝑹𝑴𝟐

ZERO POSE

𝑿𝑨𝑹𝑴𝟑

𝒀𝑨𝑹𝑴𝟑

𝑿𝑹𝑻𝑨_𝑬𝑬

𝒀𝑹𝑻𝑨_𝑬𝑬

𝑿𝑹𝑻𝑨_𝑬𝑬

𝒀𝑹𝑻𝑨_𝑬𝑬

Θ represents local rotation
ψ represents global rotation

Θ2 = +30°

Θ3 = -60°

Ψ = Θ1 + Θ2 + Θ3 = 0° = EE rotation

𝒀𝑮𝒍𝒐𝒃𝒂𝒍

𝑿𝑮𝒍𝒐𝒃𝒂𝒍Origin

𝒀𝑮𝒍𝒐𝒃𝒂𝒍

𝑿𝑮𝒍𝒐𝒃𝒂𝒍Origin

RANDOM POSE

𝒀𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴

𝑿𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴

𝒀𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴

𝑿𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴

Arm Frames

𝑿𝑹𝑻𝑨_𝑬𝑬_𝑷𝒐𝒔𝒕

Θ1 = +30°

𝒀𝑹𝑻𝑨_𝑬𝑬_𝑷𝒐𝒔𝒕

𝒀𝑨𝑹𝑴𝟎

𝑿𝑨𝑹𝑴𝟎

𝑿𝑹𝑻𝑨_𝑬𝑬_𝑷𝒐𝒔𝒕

𝒀𝑹𝑻𝑨_𝑬𝑬_𝑷𝒐𝒔𝒕
𝑿𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭

𝒀𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭

𝒀𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴_𝑰𝑭

𝑿𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴_𝑰𝑭

𝒀𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴_𝑰𝑭

𝑿𝑹𝑻𝑨_𝑬𝑬𝑪𝑨𝑴_𝑰𝑭

𝑿𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭

𝒀𝑹𝑻𝑨_𝑬𝑬_𝑰𝑭
𝒀𝑨𝑹𝑴𝟎

𝑿𝑨𝑹𝑴𝟎

MATLAB Joint Optimization

77

• Created a cost function that seeks to minimize total link length, and ultimately find
the lowest torque generated

• Brute force, optimization

INPUTS: Length of Link 1, Link 2, Link 3 as well as Joint 1 X,Y position
OUTPUTS: Configuration with lowest total torque

PSUEDO CODE
For Link1 Length Bounds:
 For Link2 Length Bounds:
 For Link3 Length Bounds:
 For J1 X position Bounds:
 For J1 Y Position Bounds:
 if: iterations L1, L2, L3, X1, Y1 can meet the main kinematic frames, store this combination and
the sum of link lengths
 else: record the combination and move onto next iteration

→ For solutions that close, choose lowest torque out of the available results

Results:
• Took a day to run (using multithreading) but ultimately worked!
• Optimized link lengths informed 3D printed RTA design

Chat Controlled
Twitch Robot

Personal Project

Winter 2024

Objective

79

Background:
• In 2014, Twitch Plays Pokemon was a popular streaming channel

where users completed the game through Twitch Chat commands
• My personal objective was to create a robot that streams itself

and is remotely controllable through Twitch Chat

Requirements:
• Fully autonomous (stand-alone system)
• 2DoF camera control (pan/tilt)
• Chat integration
• Permanently streaming

Technologies Used:
• ROS2
• MicroROS
• Teensy / Raspberry Pi / Servos
• Arduino C/C++
• Networking (UART, SSH)
• OpenCV, Video4Linux (V4L)
• Linux (Ubuntu)

Twitch Plays Pokemon

Twitch Stream Link

Twitch Robot Setup Live Twitch Stream

https://www.twitch.tv/smockodockoiot

Demonstration Video

80

Twitch Robot
Demonstration

https://www.youtube.com/watch?v=-43KEsuk_j0
https://www.youtube.com/watch?v=-43KEsuk_j0

Mechanical Design

81

• Simple Pan-Tilt Camera Design
• SG90 Servos use 5V from Raspberry Pi (convenience)

• 2 Degrees of Freedom (Pan, Tilt) that go from 0-180deg
• Camera works with Raspberry Pi by using Video4Linux (V4L)

drivers / ROS2 package sourced from online

Servo 2

Servo 1

Raspberry Pi Cam

Raspberry Pi

Teensy
CP2102

Debugger

180°

90°

0°

Servo 2 Axis

90°

Servo 1 Axis

0° 180°

Axis Orientation

82

Servo-based Definition

Camera Frame Definition

90-X

• Objective is to map the coordinates
that the viewer sees, to the actual
coordinates of the servo motors

• Makes for intuitive user experience as
a centered position is [0,0]

High Level CONOPS

83

2. User Inputs Chat Command

Command: !move_servo <servo_num> <servo_pos>

3. Message is parsed by Chat Bot for:
1. Servo Number (servo_num, [1 or 2])
2. Servo Position (servo_pos, [0 to 180°])

1. Live Stream is Started

4. Command is sent
to servo via. Teensy

5. Servo moves
to new position

6. Teensy reports
motion is complete

7. Chat bot is open
to new commands

8. Camera image to
stream is updated
(delay exists)

Position Updated

Start: Servo 1 Pos = 130° Movement from 130° to 90°

End: Servo 1 Pos = 90°

Chat message

Chat message sent

System Diagram

84

Raspberry Pi

(powered via.

wall)

Servo 1

V4L ROS2

Node

Servo 2

Teensy

Raspberry Pi

Cam

Twitch ServerTwitch Chat
TwitchBot

ROS2 Node

MicroROS

Agent

TwitchBot

Stream ROS2

Node

PWM

UART / Serial

Web
Socket

DDS

DDS

DDS

Camera
Serial

Interface
(CSI)

OpenCV

/compressed_img

Rotate +
Update Image

ffmpeg
/servo_pos

(servo position topic)

• 4 Active ROS2 Nodes
• MicroROS Agent connects

Teensy to Raspberry Pi

5V

DDS

Hardware
Networking

/ Interface
ROS2 Twitch

Debugger

UART
(RX/TX)

/move_servo

(servo movement

service) DDS
DDS

ROS Architecture

85

TwitchBot Node

- servo1_pos
- servo2_pos

V4L ROS2 Node

MicroROS

Thread 1

Thread 2

Read Chat
for

Commands

Parse if
Valid

Command

set motion_ready
= True

Block Execution
until

motion_ready ==
False (motion

complete)

Control Loop

If motion_ready == True

/servo_pos (topic)

Call /servo_motion
service based on

servo1_pos, servo2_pos,
servo_num

If motion_ready ==
False

Update servo1_pos,
servo2_pos,
servo_num

Shared variables accessed through mutex lock

Wait until service is
finished, publish response

motion_ready == False

TwitchBotStream Node

Convert /compressed_img
msgs to OpenCV2

Control Loop

Rotate Image

Append servo 1, servo 2
info onto image

Encode FFMPEG

Publish
/compressed_img

topic

Publish to Twitch

Control Loop

Note: Each ROS2 Node is run in its own tmux
process so that they can be individually
accessed through SSH from main computer

Request:
- servo_num
- servo_pos

Response:
- end_pos
- success

/servo_motion (service)

Process /servo_motion
service call request

Move servo to
requested position

(Arduino servo library)

Send service response
with servo end position,

success (if within 2°)

Connect agent (Rasp. Pi) to
client (Teensy) via Serial

Project Summary

86

Summary
• Twitch Bot is currently working as expected and is accessible on Twitch!
• Has been tested to run for a week straight without any disruptions or network drops
• Latency mainly depends on user's internet speed (Twitch App works best)

Potential Improvements:
• Improve internet connection for higher quality upload speeds on Raspberry Pi
• Add additional commands to move to specific waypoints (i.e. !kitchen, !couch)
• Improve clarity of command arguments (add diagrams to the stream)
• Improve mechanical setup (higher quality servos)

https://www.twitch.tv/smockodockoiot

MedMate

Personal Project

Flowers IoT Hackathon Winning
Submission

Fall 2020

Flower Invention Studio IoT Hackathon Objective: Design a custom IoT Prototype within two weeks to
solve a home automation task

Solution:

• MedMate, a device that helps patients and caretakers monitor medicine intake

Two Forms: pill bottle monitor and a pill dispenser

• MedMate tracks:

1. when a user should take their prescription

2. senses when a user has taken their medicine, and then

3. logs this information in a database that is presented on a webpage

• Winning submission for Flowers Invention Studio IoT Hackathon

– Worked with one other partner who focused primarily on web development

– I designed the product, state machines, device code

– Completed remotely!

References

• Hackathon Submission Link (with video)

• GitHub Link

MedMate Description

Pill Bottle
Monitor

Pill Dispenser

https://devpost.com/software/medmate
https://github.com/migueldlr/medmate

89

MedMate
demonstration Video

https://www.youtube.com/watch?v=uWqPvaWqItg
https://www.youtube.com/watch?v=uWqPvaWqItg

Hardware/Software Used

90

Tools Used:
• Ender3 Printer (personal printer)
• Solder

Software Used:
• Arduino C (C/C++)
• Eclipse Paho MQTT Python client (Python)
• Cloud Firestore (Google Firebase)
• React (JS)

Protocols:
• MQTT (Message Queuing Telemetry

Transport)
• I2C (Inter-Integrated Circuit)

Project Motivation

91

Motivation: Help my Dad and caregiver track medications by:
• reminding patients to take medicine
• allow caregiver to monitor intake history

Design Philosophy:
1. Low profile
2. Cheap
3. Simple hardware
4. Simple user interface
5. Interfaces with any standard pill bottle

ESP32 was our chosen controller because it is configurable with the Arduino client and
has full IoT functionality. The chosen network protocol was MQTT, as it is designed for
simple communication between a controller and host server.

1. User enters their
prescription
information

2. Server keeps track of
when user should take

medicine

3. User is notified to
take medicine

4. Pill bottle is taken off
MedMate

6. Time of Intake is
uploaded to Database

5. Pills are consumed and
bottle is put back on

MedMate

7. Patient History shown
on Webpage

MedMate Pill Bottle Monitor Storyboard

93

Final Prototype (Pill Bottle Monitor)

Pill Bottle

M3 Screws
Top Lid

VCNL4010
Proximity
Sensor

Main Housing

Multicolor LED

ESP32

GND

3.3V

SCL (P22)

SDA (P21)

VCNL4010

SCL

SDA

GND

3.3V

Red (P32)

Green (P33)

Blue (P25)

Multicolor LED
Red

Green

GND

Blue

220Ω

220Ω

220Ω

• Uses Proximity Sensor to sense pill bottle presence
• Added LED for debugging/clarity
• Fits common pill bottle diameters

Pill Tube

Pill Holder
VCNL4010
Proximity Sensor

SG90 Servo

Sorting Piece
Rotating Cam

Pill

Pill

Final Prototype (Pill Dispenser)

• Actuates using servo and rotating cam to release pills at medication time
• Controls how much medicine the user can take.

• Still uses proximity sensor to detect if pill has been taken
• Can be part of a larger assembly – designed for demonstration purposes

• Connect to MQTT Broker
• Subscribe to Server Topic
• ReadyToTake Variable set to

FALSE

• Wait for Server-side ACK
JSON with register info

• Device initialized as
prescription/”free tracking”

CALLBACK
• Server-side Interrupt
• Reads in JSON, sets

ReadyToTake Variable as
True

ReadyToTake == True
True False

State 0:
• Read if pill bottle is

present via. Sensor
• Green LED

Bottle no
longer present

State 1:
• Start a timer

Instant
Transition

State 2:
• Wait for bottle to

return
• Yellow LED

Bottle does not
return in 30

seconds

Alert!
• Alert is sent to

database and
recorded, then
shown on webpage

• Red LED

Instant Transition

State 3:
• JSON message is sent to

server with time of intake
(when the bottle is
returned)

• ReadyToTake set to FALSE

Bottle is
returned

State 4:
• Read if pill bottle is present via. Sensor
• Purple LED

State 5:
Start a
timer

Bottle is
not present

Bottle is
present

DO
NOTHING

☺!

State 6:
• Wait for bottle to

return

Bottle is
returned

Bottle does not
return in 30 seconds

MAIN LOOP

SETUP

MedMate Pill Bottle Monitor State Machine

Exobiology Extant Life Surveyor
Robot Sampling System

Senior Capstone – JPL

Fall 2021

96

Background & Problem Statement

• Exobiology Extant Life Surveyor (EELS)

– Bio-inspired snake-like robot

– Traverse Enceladus’ icy ocean-world
terrain to search for life

• Front nose segment must be designed to:

– Collect sub-glacial liquid samples

– Gather environmental data

– Travel over icy terrain and underwater

• Impact

– Understand factors contributing to
melting glacial icecaps

– Explore glacial moulins and crevices
traditionally inaccessible to humans

– Determine conditions required to
sustain life

Personal Contributions: Project Management,
Mechatronics / Code Design, Literature Research

System Requirements
EE

LS
 S

ys
te

m

In
te

gr
at

io
n

• Fits within Ø12cm
X 50cm cylinder

• Withstands icy
environmental
conditions

• -20 to 20°C

• 0 to 150psi

• 0 to 2m/s flow

• Withstands
traversal through
environment

• Powered by 48V,
5A

Li
q

u
id

 S
am

p
lin

g
Sy

st
em

• Acquires 2
separate 1L
samples of liquid

• Sterilizable
collection system

• Easily removable
liquid samples

• Fill at rate of
0.5L/min Se

n
so

r
D

at
a

C
o

lle
ct

io
n

• Gather pressure,
temperature,
aquatic chemistry,
and imagery data

• 0°C minimum
sensor operating
temperature

• -20°C minimum
sensor storage
temperature

98

Preliminary Sketches & CAD

• Initial ideation created an outline of the system
shape and major mechanical components

• Both vacuum and pump-based designs were
considered

Final Design and
Prototype

Final Design and Prototype

100

46cm12cm

Mechanical: Overview

Liquid
Collection

Liquid Storage

Electronics
Cavity

EELS
Connection

Mechanical: Liquid Collection

Intake

2× Presterilized
Sample Bags

2× Solenoid
Valves

Peristaltic
Pump

Wye
Valve

Flow Meter

Pressure
Regulator

2× Manual
Bag Valves

1

2

3 4

5
6 7

8

Electrical Overview

• Flow sensor to detect when
bag is full

• Humidity sensor to detect
leaks as small as 5mL

• Two solenoid valves to control
the filling of bags separately

Arduino

Flow Sensor

2× Humidity
Sensors

2× Solenoid Valves

12V Power Supply

2× Relays

Peristaltic PumpMotor Driver

5V

12V

Data

Control

103

Wait for
Input

Open
Solenoid

Wait for
Input

Reset

Start Timer &
Pump

Deactivate
System

Throw Error

Leak Detected
Humidity > hTH

ERROR LOOP

END

MAIN LOOP

1 Sample
Collected

2 Samples
Collected

Full Bag Detected
Flow Speed < vTH

OR
Time > tTH

START

Initialize
System

Software Overview

104

Final Prototype

Liquid
Collection

Liquid StorageWater Inlet

Peristaltic
Pump

2 Normally
Closed
Solenoids

2 1L bags with manual
valve

Final Prototype Video

Fill Time: 2min 15s (135s)

Humidity Sensor Testing

0 50 100 150 200 250 300 350

Time (s)

45

50

55

60

65

70

H
u

m
id

it
y
 (

%
)

Humidity (%) vs. Time during Filling

Trial 1, Filling

Trial 2, Filling

Trial 3, Ambient (@25min)

• Conducted test trials with previous prototype to determine humidity sensor effectiveness in determining leaks
• Performed ambient, filling, and leak tests
• Rate of change of humidity can be used to determine if leaks occur

Humidity (%) vs. Time during Leak

Future Work

• More refined prototype rated for
Antarctic conditions

• Test while submerged underwater

– Fit electronics into sampling system

– Create custom PCB and choose a
lower profile microcontroller

• Implement full system control using
flow meter and humidity sensors

• Internal air pressurization

Impact

• Aid in ongoing efforts to understand
melting glacial icecaps and inaccessible
glacier moulins

• Provide data of the subglacial
environment to determine conditions
suitable to sustain life

Conclusion

108

TurtleBot ROS Demonstrations

Coursework

Spring 2022

109

• Robot to follow a specific object in space while maintaining object in center and
at correct distance

– Used LIDAR to determine distance to object, PID to maintain relative distance/angle

– Used OpenCV to track object and maintain a specific orientation

OpenCV Object Following with PID

Robot Navigation with Odometry/Lidar

111

• Using robots onboard odometry and dead reckoning to navigate to various
waypoints while avoiding random obstacles

– Writing and subscribing to odometry nodes, robot kinematics

– Filtering noisy lidar data

– Obstacle detection with avoidance routine, while maintaining knowledge of position

Final Project: Sign Classification and Navigation to Goal

112

• Robot classifies 6 different signs to navigate towards an end goal

– Used state machine to control robot behavior

• Implemented behaviors if sign is not correctly classified or if robot is stuck

– Trained and used KNN ML model to classify signs with image processing

– LiDAR, filtering, odometry, PID, ROS, image processing, classification

Additional 3D Printed Projects

113

• 9:1 Gear Ratio with 3D Printed Gears and
COTS Bearings

• Demonstration of gear feasibility and
design with 3D Printed parts

– Skeleton Modeling

3D Printed Gearbox

	Default Section
	Slide 1: Stephen Mock Work Portfolio
	Slide 2: About Me
	Slide 3: Skills
	Slide 4: Portfolio Table of Contents
	Slide 5: NASA Jet Propulsion Lab Summary of Work
	Slide 6: Overview – CCRS Testbeds roles held by Stephen Mock
	Slide 7: On Orbit Assembly Testbeds Systems (OATS) Org Chart
	Slide 8
	Slide 9: Preface
	Slide 10: EDT Overview
	Slide 11: EDT Functional Block Diagram
	Slide 12: Main Program Software Design
	Slide 13: Operator GUI Screen
	Slide 14: Operator GUI Screen cont.
	Slide 15: Linear Actuator Movement Block Diagrams
	Slide 16: Checkout Summary
	Slide 17: Checkout Summary (continued)
	Slide 18: Basic Feed Motion Checkout Results
	Slide 19
	Slide 20: Testbed Background + Objective
	Slide 21: Coordinate Frame Definition
	Slide 22: Implementation Approach
	Slide 23: Main Vector Definition
	Slide 24: Ground Truth Test Approach
	Slide 25: Rotation (Orientation) Ground Truth Tests
	Slide 26: Translation Ground Truth Tests
	Slide 27: Combined Ground Truth Tests
	Slide 28
	Slide 29: Capture, Containment, and Return System (CCRS) in ERO Context
	Slide 30: CCRS Overview for Testbeds context
	Slide 31: PIT Overview
	Slide 32: PIT Software Functional Block Diagram
	Slide 33
	Slide 34: Keysight Power Supply
	Slide 35: Main Functionality of UPS
	Slide 36: Keysight Power Supply Wrapper
	Slide 37: PSU_MGR Setup
	Slide 38: Architecture #1: Asynchronous Control, Multithread
	Slide 39: Architecture #2: Synchronous Control, Single Loop
	Slide 40: Architecture #3: Asynchronous Control, Single Thread
	Slide 41: State Machine for Single Power Supply Node
	Slide 42: Alternative Architecture
	Slide 43
	Slide 44: Thermal Manager Objective
	Slide 45: FlatSat Physical Setup
	Slide 46: Thermal Controller Required Functions (Manual & Commanded)
	Slide 47: Main Functionality of THM_MGR
	Slide 48: THM_MGR Setup
	Slide 49: Architecture #3: Asynchronous Control, Single Thread
	Slide 50: State Machine for Thermal Manager
	Slide 51
	Slide 52: hxpd_mgr
	Slide 53
	Slide 54: Disclaimer
	Slide 55: Mars Sample Return Planning Overview
	Slide 56: CCRS Containment Operations
	Slide 57: Assembly Operations
	Slide 58: The Problem: End Effector Misalignment
	Slide 59: Testbed Requirements
	Slide 60: Testbed Requirements
	Slide 61: Testbed Requirements
	Slide 62: Previous Flight Project Testbeds
	Slide 63: Testbed Configuration
	Slide 64: Test Bed Dimensions
	Slide 65: Additional Photos
	Slide 66: Testbed Operational Concept
	Slide 67: Real Life Photos/Demonstration
	Slide 68
	Slide 69: Disassembly Components
	Slide 70
	Slide 71: Tube Disassembly Tools
	Slide 72: Gas Puncture Trade Space
	Slide 73
	Slide 74: RTA Kinematics Simulation
	Slide 75: Program Features
	Slide 76: Arm Frames
	Slide 77: MATLAB Joint Optimization
	Slide 78: Chat Controlled Twitch Robot
	Slide 79: Objective
	Slide 80: Demonstration Video
	Slide 81: Mechanical Design
	Slide 82: Axis Orientation
	Slide 83: High Level CONOPS
	Slide 84: System Diagram
	Slide 85: ROS Architecture
	Slide 86: Project Summary
	Slide 87: MedMate
	Slide 88: MedMate Description
	Slide 89
	Slide 90: Hardware/Software Used
	Slide 91: Project Motivation
	Slide 92: MedMate Pill Bottle Monitor Storyboard
	Slide 93: Final Prototype (Pill Bottle Monitor)
	Slide 94: Final Prototype (Pill Dispenser)
	Slide 95: MedMate Pill Bottle Monitor State Machine
	Slide 96: Exobiology Extant Life Surveyor Robot Sampling System
	Slide 97: Background & Problem Statement
	Slide 98: System Requirements
	Slide 99: Preliminary Sketches & CAD
	Slide 100: Final Design and Prototype
	Slide 101: Mechanical: Overview
	Slide 102: Mechanical: Liquid Collection
	Slide 103: Electrical Overview
	Slide 104: Software Overview
	Slide 105: Final Prototype
	Slide 106: Final Prototype Video
	Slide 107: Humidity Sensor Testing
	Slide 108: Conclusion
	Slide 109: TurtleBot ROS Demonstrations
	Slide 110: OpenCV Object Following with PID
	Slide 111: Robot Navigation with Odometry/Lidar
	Slide 112: Final Project: Sign Classification and Navigation to Goal
	Slide 113: Additional 3D Printed Projects
	Slide 114: 3D Printed Gearbox

